<--- Back to Details
First PageDocument Content
Stochastic processes / Critical phenomena / Lattice models / Statistical mechanics / Phase transitions / Percolation theory / Schramm–Loewner evolution / Michael Aizenman / Brownian motion / Physics / Statistics / Probability and statistics
Date: 2012-03-29 09:17:13
Stochastic processes
Critical phenomena
Lattice models
Statistical mechanics
Phase transitions
Percolation theory
Schramm–Loewner evolution
Michael Aizenman
Brownian motion
Physics
Statistics
Probability and statistics

Michael Aizenman Stochastic geometry and interacting fields

Add to Reading List

Source URL: www.nieuwarchief.nl

Download Document from Source Website

File Size: 143,28 KB

Share Document on Facebook

Similar Documents

Physics / Quantum mechanics / Guggenheim Fellows / Theoretical physics / Barry Simon / California Institute of Technology faculty / Mathematical formulation of quantum mechanics / Interpretations of quantum mechanics / Statistical physics / Quantum field theory / Michael Aizenman

Curriculum Vitae Name: William G. Faris Address:

DocID: 1q2Da - View Document

Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook (Kurizki group, Michael Aizenman) Weizmann Institute of Science, Is

DocID: 1cBwX - View Document

Academia / Matrix / Knowledge / Science / Barry Simon / Mathematical physics / Michael Aizenman

Publications My most important works are [7], [11], [20], [27], [29], [30]. My personal favorite is [29], for which a preliminary version is available from my home page. Close runners up are [10], [18], andPublish

DocID: 198vv - View Document

Critical phenomena / Michael Aizenman / Phase transitions / Combinatorics / Ising model / Potts model / Communications in Mathematical Physics / Percolation / Quantum field theory / Physics / Lattice models / Statistical mechanics

Aernout van Enter, Frank den Hollander Laudatio for Michael Aizenman

DocID: 2tC7 - View Document

Stochastic processes / Critical phenomena / Lattice models / Statistical mechanics / Phase transitions / Percolation theory / Schramm–Loewner evolution / Michael Aizenman / Brownian motion / Physics / Statistics / Probability and statistics

Michael Aizenman Stochastic geometry and interacting fields

DocID: 2tC6 - View Document