<--- Back to Details
First PageDocument Content
Maximum likelihood / Dimensional analysis / Parametrization / Ordinary least squares / Vector autoregression / Generalized method of moments / Multivariate normal distribution / Likelihood-ratio test / Fisher information / Statistics / Estimation theory / M-estimator
Date: 2014-07-23 16:53:53
Maximum likelihood
Dimensional analysis
Parametrization
Ordinary least squares
Vector autoregression
Generalized method of moments
Multivariate normal distribution
Likelihood-ratio test
Fisher information
Statistics
Estimation theory
M-estimator

Identification and estimation of Gaussian affine term structure models

Add to Reading List

Source URL: faculty.chicagobooth.edu

Download Document from Source Website

File Size: 344,36 KB

Share Document on Facebook

Similar Documents

b (after Vogan) A parametrization of K Peter E. Trapa Notes from an AIM workshop, July 2004

DocID: 1vd7M - View Document

Ann Inst Stat Math:787–803 DOIs10463x Approximate theory-aided robust efficient factorial fractions under baseline parametrization Rahul Mukerjee · S. Huda

DocID: 1rye2 - View Document

Test design under voluntary participation Supplementary material Frank Rosar University of Bonn April 27, Parametrization of HARA utility

DocID: 1relc - View Document

Interpolation / Numerical analysis / B-spline / Flat spline / Cubic Hermite spline / Spline / Control point / Linear interpolation / Shape optimization / Finite element method / Mesh generation / Computer representation of surfaces

Integrated geometry parametrization and grid movement using B-spline meshes Jason E. Hicken∗ and David W. Zingg †

DocID: 1qRkm - View Document

Machine learning / Cybernetics / Learning / Manifold / Cognition / Dimension reduction / Multivariate statistics / Cognitive science / Nonlinear dimensionality reduction

Manifold learning algorithms aim to recover the underlying lowdimensional parametrization of the data using either local or global features. It is however widely recognized that the low dimensional parametrizations will

DocID: 1qwmo - View Document