<--- Back to Details
First PageDocument Content
Finite groups / Sylow theorems / Modular representation theory / Representation theory / Valuation ring / Casson invariant / Gelfand pair
Date: 2015-05-22 11:06:23
Finite groups
Sylow theorems
Modular representation theory
Representation theory
Valuation ring
Casson invariant
Gelfand pair

491 Documenta Math. Invariant Blocks Under Coprime Actions ¨th1

Add to Reading List

Source URL: documenta.sagemath.org

Download Document from Source Website

File Size: 200,60 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Symmetry / Representation theory / Lie groups / Topological groups / Space group / Matrix / Gelfand pair / Oscillator representation

Master Thesis Radboud Universiteit NijmegenThe space groups with point group A5

DocID: 1rfiL - View Document

Algebra / Abstract algebra / Mathematics / Automorphic forms / Langlands program / Representation theory / Whittaker model / Induced representation / Admissible representation / Gelfand pair / Symbol

1191 Documenta Math. Essential Whittaker Functions for GL(n) Nadir Matringe

DocID: 1retb - View Document

Algebra / Abstract algebra / Mathematics / Representation theory / Lie algebras / Gelfand pair / Harmonic analysis / Littelmann path model

c 2011 Society for Industrial and Applied Mathematics  SIAM J. COMPUT. Vol. 40, No. 4, pp. 1179–1209

DocID: 1qF2M - View Document

Algebra / Abstract algebra / Mathematics / Representation theory of Lie groups / Representation theory / Lie groups / Group theory / Representation of a Lie group / Group representation / Adjoint representation / Differential geometry / Gelfand pair

Access Provided by Princeton University at:38PM GMT P1: IOI PB440-18 HIDA-0662G

DocID: 1qADs - View Document

Algebra / Abstract algebra / Mathematics / Representation theory / Group theory / Group representation / Gelfand pair / Frobenius group

Restricting representations to a normal subgroup - Compact Quantum Groups Alfried Krupp Wissenschaftskolleg Greifswald

DocID: 1qmFl - View Document