<--- Back to Details
First PageDocument Content
Mathematical analysis / Mathematics / Differential forms / Constructible universe / Closed and exact differential forms / Generalised Whitehead product / Differential forms on a Riemann surface
Date: 2016-05-06 06:48:04
Mathematical analysis
Mathematics
Differential forms
Constructible universe
Closed and exact differential forms
Generalised Whitehead product
Differential forms on a Riemann surface

INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS Inverse Problems–1348

Add to Reading List

Source URL: www.siltanen-research.net

Download Document from Source Website

File Size: 494,24 KB

Share Document on Facebook

Similar Documents

Differential forms in algebraic geometry Workshop, Univ. of Freiburg, September 19-23, 2016 Speakers: Aravind Asok (Los Angeles), Bhargav Bhatt (Michigan), Jean-Louis Colliot-Thélène (Paris), Hélène Esnault (Berlin),

DocID: 1rFdO - View Document

Contents PREFACE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix CHAPTER 1 GEOMETRY, DIFFERENTIAL AND INTEGRAL FORMS : : : : : : : : : : : : :

DocID: 1rz2B - View Document

Mathematical analysis / Mathematics / Special functions / Holonomic function / Holonomic constraints / Recurrence relation / Differential forms on a Riemann surface / Transcendental number

A Non-Holonomic Systems Approach to Special Function Identities

DocID: 1rttZ - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rsVn - View Document

Operator theory / Mathematics / Representation theory / Linear algebra / Invariant subspace / Complex analysis / Partial differential equations / Loewner differential equation

595 Documenta Math. ¨hler Forms on Complex Lie Groups Pseudoka

DocID: 1rrZH - View Document