<--- Back to Details
First PageDocument Content
Algebra / Mathematics / Linear algebra / Matrices / Mathematical physics / Matrix theory / Hankel matrix / Toeplitz matrix / Symmetric matrix / Random matrix / Matrix / Eigenvalues and eigenvectors
Date: 2011-12-25 21:07:42
Algebra
Mathematics
Linear algebra
Matrices
Mathematical physics
Matrix theory
Hankel matrix
Toeplitz matrix
Symmetric matrix
Random matrix
Matrix
Eigenvalues and eigenvectors

Add to Reading List

Source URL: www.emis.de

Download Document from Source Website

File Size: 98,78 KB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Matrices / Symmetric matrix / Tridiagonal matrix / Numerical linear algebra / Lie groups / Differential geometry

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS

DocID: 1xV4O - View Document

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS GEORGE A. HAGEDORN AND CAROLINE LASSER Abstract. We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property f

DocID: 1sfqQ - View Document

DATA COMPRESSION AND CRITICAL POINTS DETECTION USING NORMALIZED SYMMETRIC SCATTERED MATRIX Khagendra Thapa B.Sc. B.Sc(Hons) CNAA, M.Sc.E. M.S. Ph.D. Department of Surveying and MappingFenis State University Big Rapids, M

DocID: 1rAFN - View Document

Algebra / Linear algebra / Mathematics / Matrices / Matrix theory / Matrix / Determinant / Square matrix / Symmetric matrix / Hermitian matrix / Diagonalizable matrix / Integer matrix

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1rixu - View Document

Algebra / Mathematics / Linear algebra / Matrix theory / Spectral theory / Matrices / Homogeneous polynomials / Eigenvalues and eigenvectors / Matrix / Symmetric matrix / Spectrum / Determinant

Matrix polynomials and structured linearizations. Advisor: Maria Isabel Bueno Cachadina Let P (λ) = Ak λk + Ak−1 λk−1 + · · · + A0

DocID: 1rhAl - View Document