MapReduce

Results: 1048



#Item
241

Dryad and DryadLINQ MapReduce is great, but it lacks flexibility in the structure of computation that can be represented. One way to visualize MapReduce computations is as a graph structure (a DAG). If you can pigeonhole

Add to Reading List

Source URL: courses.cs.washington.edu

Language: English - Date: 2013-06-14 13:51:01
    242Computing / Concurrent computing / Software / Data management / Parallel computing / Hadoop / Distributed computing architecture / Data integration / MapReduce / Big data / Geographic information system / Universal Disk Format

    Brainwash: A Data System for Feature Engineering Michael Anderson∗ Dolan Antenucci∗ Victor Bittorf† Matthew Burgess∗ Michael Cafarella∗

    Add to Reading List

    Source URL: www.cs.stanford.edu

    Language: English - Date: 2013-07-22 00:20:14
    243

    NDC: Analyzing the Impact of 3D-Stacked Memory+Logic Devices on MapReduce Workloads Seth H Pugsley1, Jeffrey Jestes1, Huihui Zhang1 , Rajeev Balasubramonian1 , Vijayalakshmi Srinivasan2, Alper Buyuktosunoglu2, Al Davis1

    Add to Reading List

    Source URL: www.cs.utah.edu

    Language: English - Date: 2014-03-19 22:22:24
      244Computing / Concurrent computing / Hadoop / Parallel computing / Cloud infrastructure / Apache Software Foundation / Distributed computing architecture / MapReduce / Apache Hadoop / Data-intensive computing / State machine replication / Byzantine fault tolerance

      Byzantine Fault-Tolerant MapReduce: Faults Are Not Just Crashes Pedro Costa1 , Marcelo Pasin1 , Alysson N. Bessani1 , Miguel Correia2 1 Universidade de Lisboa, Faculdade de Ciˆencias, LASIGE – Lisboa, Portugal 2 Insti

      Add to Reading List

      Source URL: www.di.fc.ul.pt

      Language: English - Date: 2011-10-06 14:57:13
      245

      MapReduce and Distributed Data Analysis Sergei Vassilvitskii Google Research

      Add to Reading List

      Source URL: people.cs.umass.edu

      Language: English - Date: 2012-05-25 11:30:22
        246

        Efficient Parallel kNN Joins for Large Data in MapReduce Chi Zhang1 1 Feifei Li2

        Add to Reading List

        Source URL: www.cs.utah.edu

        Language: English - Date: 2012-01-25 19:59:03
          247

          Large-scale L-BFGS using MapReduce Weizhu Chen, Zhenghao Wang, Jingren Zhou Microsoft {wzchen,zhwang,jrzhou}@microsoft.com

          Add to Reading List

          Source URL: papers.nips.cc

          Language: English - Date: 2014-12-02 20:42:15
            248

            Fast Personalized PageRank on MapReduce ∗ Bahman Bahmani Stanford University

            Add to Reading List

            Source URL: research.microsoft.com

            Language: English - Date: 2011-07-20 21:24:07
              249

              Fast Greedy Algorithms in MapReduce and Streaming Ravi Kumar∗ Google Mountain View, CA Benjamin Moseley∗†

              Add to Reading List

              Source URL: cseweb.ucsd.edu

              Language: English - Date: 2013-07-26 16:27:26
                250Computing / Hadoop / Cloud infrastructure / Apache Hadoop / Cloudera / MapReduce / Apache HBase / MapR / Big data / Apache Hive / Data-intensive computing

                How Hadoop Clusters Break Ariel Rabkin and Randy Katz EECS Department, UC Berkeley Berkeley, California, USA {asrabkin,randy}@cs.berkeley.edu Abstract

                Add to Reading List

                Source URL: asrabkin.bitbucket.org

                Language: English - Date: 2015-07-14 00:13:05
                UPDATE