<--- Back to Details
First PageDocument Content
Macaulay2 / Macaulay computer algebra system / David Eisenbud / Bernd Sturmfels / Algebraic geometry / Commutative algebra / Francis Sowerby Macaulay / Combinatorial commutative algebra / Mathematics / Algebra / Academia
Date: 2002-01-07 18:01:22
Macaulay2
Macaulay computer algebra system
David Eisenbud
Bernd Sturmfels
Algebraic geometry
Commutative algebra
Francis Sowerby Macaulay
Combinatorial commutative algebra
Mathematics
Algebra
Academia

ACM 8 http://www.springer.de

Add to Reading List

Source URL: www.math.uiuc.edu

Download Document from Source Website

File Size: 110,40 KB

Share Document on Facebook

Similar Documents

Revised August 2014 DAVID EISENBUD VITA Born April 8, 1947, New York City US Citizen Married, with two children

DocID: 1nRjO - View Document

Updated: July 11, 1996 Corrections to Commutative Algebra with a View Towards Algebraic Geometry by David Eisenbud

DocID: 1mzVw - View Document

SHORT ACCESSIBLE PAPERS IN COMMUTATIVE ALGEBRA DAVID EISENBUD AND CRAIG HUNEKE This is a personal and idiosyncratic list of some classic papers on commutative algebra that should be accessible after a first (sometimes se

DocID: 1kXlR - View Document

Homological algebra / Binary operations / David Eisenbud / Homogeneous coordinate ring / Betti number / D-module / Tensor / Graduate Texts in Mathematics / Abstract algebra / Mathematics / Algebra

Boij–S¨ oderberg theory and tensor complexes Christine Berkesch (joint work with Daniel Erman, Manoj Kummini, Steven V Sam) The conjectures of M. Boij and J. S¨oderberg [3], proven by D. Eisenbud and F.-O. Schreyer [

DocID: 19XvS - View Document

Homological algebra / Binary operations / David Eisenbud / Homogeneous coordinate ring / Betti number / D-module / Tensor / Graduate Texts in Mathematics / Abstract algebra / Mathematics / Algebra

Boij–S¨ oderberg theory and tensor complexes Christine Berkesch (joint work with Daniel Erman, Manoj Kummini, Steven V Sam) The conjectures of M. Boij and J. S¨oderberg [3], proven by D. Eisenbud and F.-O. Schreyer [

DocID: 19VNz - View Document