<--- Back to Details
First PageDocument Content
Differential geometry / MAXEkSAT / Constructible universe / NP-hard problems / NP-complete problems
Date: 2008-01-23 16:06:35
Differential geometry
MAXEkSAT
Constructible universe
NP-hard problems
NP-complete problems

Technical Report CS2008[removed]Department of Computer Science and Engineering

Add to Reading List

Source URL: charlotte.ucsd.edu

Download Document from Source Website

File Size: 113,17 KB

Share Document on Facebook

Similar Documents

Deterministic Sampling Algorithms for Network Design Anke van Zuylen Abstract For several NP-hard network design problems, the best known approximation algorithms are remarkably simple randomized algorithms called Sample

DocID: 1sT6n - View Document

Polynomial-time special cases of NP-hard problems

DocID: 1sIPR - View Document

Graph theory / Mathematics / NP-complete problems / Information theory / Combinatorial optimization / NP-hard problems / Lovsz number / Independent set

A semidefinite programming hierarchy for geometric packing problems David de Laat Joint work with Fernando M. de Oliveira Filho and Frank Vallentin DIAMANT Symposium – November 2012

DocID: 1rs14 - View Document

Graph theory / Operations research / Mathematics / Computational complexity theory / Network flow / NP-complete problems / NP-hard problems / Travelling salesman problem / Multi-commodity flow problem / Flow network

TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Load-Dependent and Precedence-Based Models for Pickup and Delivery Problems

DocID: 1rpCH - View Document

Graph theory / Mathematics / Computational complexity theory / NP-hard problems / NP-complete problems / Edsger W. Dijkstra / Combinatorial optimization / Approximation algorithms / Travelling salesman problem / Shortest path problem / Matching / Randomized algorithm

Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems∗ Karl Bringmann†1 , Christian Engels2 , Bodo Manthey3 , and B. V. Raghavendra Rao4 1

DocID: 1r9Cc - View Document