<--- Back to Details
First PageDocument Content
Stochastic optimization / Estimation theory / Computational statistics / M-estimators / Convex optimization / Stochastic gradient descent / Matrix / Fisher information / Deep learning / Covariance matrix
Date: 2015-06-23 20:50:51
Stochastic optimization
Estimation theory
Computational statistics
M-estimators
Convex optimization
Stochastic gradient descent
Matrix
Fisher information
Deep learning
Covariance matrix

arXiv:1410.7455v8 [cs.NE] 22 Jun 2015

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 301,21 KB

Share Document on Facebook

Similar Documents

Numerical analysis / Dynamical systems / Classical mechanics / Hamiltonian mechanics / Symplectic integrator / Mathematical optimization / Gradient descent / Leapfrog integration / Bregman Lagrangian / Lagrangian mechanics / Bregman divergence

Dynamical, Symplectic and Stochastic Perspectives on Gradient-Based Optimization Michael I. Jordan University of California, Berkeley March 3, 2018

DocID: 1xVqC - View Document

ECEFallSyllabus Robust and Stochastic Optimization

DocID: 1vpB0 - View Document

EE266 and MS&E251: Introduction About the course Optimization Dynamical systems Stochastic control

DocID: 1vkoK - View Document

Stochastic Maximum Likelihood Optimization via Hypernetworks Abdul-Saboor Sheikh, Kashif Rasul, Andreas Merentitis & Urs Bergmann {saboor.sheikh, kashif.rasul, urs.bergmann}@zalando.de

DocID: 1vg3V - View Document

Scenario generation for stochastic optimization problems via the sparse grid method ∗ Michael Chen† Sanjay Mehrotra‡

DocID: 1vfTO - View Document