<--- Back to Details
First PageDocument Content
Estimation theory / Akaike information criterion / Hirotugu Akaike / Statistical models / M-estimators / Likelihood principle / Maximum likelihood / Box–Jenkins / Bayesian information criterion / Statistics / Model selection / Statistical theory
Date: 2004-03-31 11:09:34
Estimation theory
Akaike information criterion
Hirotugu Akaike
Statistical models
M-estimators
Likelihood principle
Maximum likelihood
Box–Jenkins
Bayesian information criterion
Statistics
Model selection
Statistical theory

Add to Reading List

Source URL: www.garfield.library.upenn.edu

Download Document from Source Website

File Size: 75,20 KB

Share Document on Facebook

Similar Documents

Statistical classification / Statistics / Probability and statistics / Mathematics / Support vector machine / Predictive modelling / K-nearest neighbors algorithm / Mathematical model / Data analysis / Spatial analysis / Regression analysis / Artificial neural network

Visualizing statistical models: Removing the blindfold Hadley Wickham, Dianne Cook and Heike Hofmann Department of Statistics MSMain St Houston TXe-mail:

DocID: 1xVjw - View Document

Estimation theory / Econometrics / Statistical inference / Estimator / Probability distribution fitting / M-estimators / Maximum likelihood estimation / Fisher information / Gamma distribution / Maximum spacing estimation

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models Michael Gutmann Dept of Computer Science and HIIT, University of Helsinki

DocID: 1xUlB - View Document

Code Completion with Statistical Language Models Veselin Raychev Martin Vechev Eran Yahav

DocID: 1xToM - View Document

An Introduction to the Statistical Analysis of Agent-Based Models Giorgio Fagiolo https://mail.sssup.it/~fagiolo

DocID: 1vhKi - View Document

FallSTA4513: Statistical Models of Networks Lecture 3 — 24 September, 2014 Prof. Daniel M. Roy

DocID: 1vfwF - View Document