M-estimator

Results: 410



#Item
71Regression analysis / Econometrics / Image denoising / Spatial data analysis / Nonparametric regression / Kernel regression / Mutual information / M-estimator / Statistics / Non-parametric statistics / Estimation theory

NONPARAMETRIC REGRESSION IN IMAGING: FROM LOCAL KERNEL TO MULTIPLE-MODEL NONLOCAL COLLABORATIVE FILTERING Vladimir Katkovnik, Alessandro Foi, Karen Egiazarian, and Jaakko Astola Department of Signal Processing, Tampere U

Add to Reading List

Source URL: ticsp.cs.tut.fi

Language: English - Date: 2008-09-03 07:24:05
72Robust statistics / Variance / Estimator / Scatter matrix / Sample mean and sample covariance / MINQUE / Shrinkage estimator / Statistics / Estimation theory / M-estimator

Microsoft Word - Abstract_Tyler

Add to Reading List

Source URL: www.statistik.tu-dortmund.de

Language: English - Date: 2014-09-19 05:11:47
73Fisher information / Parametric model / Estimator / Linear regression / Score / Efficient estimator / M-estimator / Statistics / Estimation theory / Maximum likelihood

ESTIMATION THEORY AND INFORMATION GEOMETRY BASED ON DENOISING Aapo Hyv¨arinen Dept of Computer Science, Dept of Mathematics & Statistics, and HIIT University of Helsinki, Finland. ABSTRACT We consider a new estimation m

Add to Reading List

Source URL: sp.cs.tut.fi

Language: English - Date: 2008-08-06 07:07:00
74Statistical theory / Regression analysis / Parametric statistics / Bootstrapping / Resampling / M-estimator / Pivotal quantity / Ordinary least squares / T-statistic / Statistics / Estimation theory / Statistical inference

A Score Based Approach to Wild Bootstrap Inference Patrick Kline Andres Santos∗

Add to Reading List

Source URL: eml.berkeley.edu

Language: English - Date: 2011-08-05 15:02:00
75Econometrics / Statistical inference / Regression analysis / Maximum likelihood / Parametric model / Linear regression / Consistent estimator / Matrix norm / Loss function / Statistics / Estimation theory / Statistical theory

Submitted to the Statistical Science A unified framework for high-dimensional analysis of M -estimators with decomposable regularizers

Add to Reading List

Source URL: www.eecs.berkeley.edu

Language: English - Date: 2012-06-03 10:52:44
76Econometrics / Regression analysis / Statistical tests / Resampling / Estimator / Nonparametric regression / Linear regression / Statistics / Statistical inference / Non-parametric statistics

Nonparametric methods for directional data Eduardo García–Portugués (University of Copenhagen) Joint work with I. Van Keilegom, R. M. Crujeiras and W. González–Manteiga In this talk we will introduce two nonparame

Add to Reading List

Source URL: www.eco.uc3m.es

Language: English - Date: 2015-04-08 06:50:09
77Statistical inference / M-estimators / Robust statistics / Maximum likelihood / Efficient estimator / Estimator / Median / Consistent estimator / Kernel density estimation / Statistics / Estimation theory / Statistical theory

IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 6, JUNEPREPRINT) Fast multidimensional entropy estimation by k-d partitioning Dan Stowell, Mark D. Plumbley Abstract—We describe a non-parametric estimator for the

Add to Reading List

Source URL: c4dm.eecs.qmul.ac.uk

Language: English - Date: 2009-05-13 08:48:24
78Econometrics / Generalized method of moments / Linear least squares / Linear regression / Estimator / Least squares / Variance / M-estimator / Covariance / Statistics / Regression analysis / Estimation theory

3. The Generalized Method of Moments The Generalized Method of Moments, as the name suggest, can be thought of just as a generalization of the classical MM. A key in the GMM is a set of population moment conditions that

Add to Reading List

Source URL: lipas.uwasa.fi

Language: English - Date: 2009-11-16 04:15:50
79Consistent estimator / Maximum likelihood / Fisher information / Fisher consistency / Loss function / Estimator / Sufficient statistic / Delta method / M-estimator / Statistics / Estimation theory / Statistical theory

Chapter 1 Heuristics The official dogma on parametric estimation is: Good estimators converge to the right thing and have limiting normal distributions; moreover, the variance of the limiting distribution can’t be sma

Add to Reading List

Source URL: www.stat.yale.edu

Language: English - Date: 2010-09-07 00:00:23
80Machine learning / Expectation–maximization algorithm / Errors-in-variables models / Estimator / Kernel density estimation / M-estimator / Minimax estimator / Statistics / Estimation theory / Maximum likelihood

Chapter 1 Rise of the Machines Larry Wasserman On the 50th anniversary of the Committee of Presidents of Statistical Societies I reflect on the rise of the field of Machine Learning and what it means

Add to Reading List

Source URL: www.stat.cmu.edu

Language: English - Date: 2013-02-16 16:55:39
UPDATE