<--- Back to Details
First PageDocument Content
Model selection / Actuarial science / Deviance / Hypothesis testing / Logistic regression / Logit / Akaike information criterion / Logistic function / Degrees of freedom / Statistics / Categorical data / Regression analysis
Date: 2007-11-14 02:47:21
Model selection
Actuarial science
Deviance
Hypothesis testing
Logistic regression
Logit
Akaike information criterion
Logistic function
Degrees of freedom
Statistics
Categorical data
Regression analysis

Logistic regression (with R) Christopher Manning 4 November

Add to Reading List

Source URL: www-nlp.stanford.edu

Download Document from Source Website

File Size: 125,10 KB

Share Document on Facebook

Similar Documents

Permutation / Mixture model / Mixture distribution / Learning / Probability and statistics / Cognition

What’s Your Choice? Learning the Mixed Multi-nomial Logit Model Ammar Ammar Sewoong Oh

DocID: 1xTWk - View Document

The random coefficients logit model is identified

DocID: 1vs7Y - View Document

Introduction Logit Generalized Extreme Value (GEV) Qualitative Response Models Michael R. Roberts

DocID: 1uNWm - View Document

logit.spls.adapt sgpls spls.log

DocID: 1tDAT - View Document

logit−spls−ad sgpls 3

DocID: 1tB9i - View Document