<--- Back to Details
First PageDocument Content
Theoretical computer science / Computational complexity theory / Mathematics / Logic in computer science / NP-complete problems / Boolean algebra / Boolean satisfiability problem / Electronic design automation / Symposium on Discrete Algorithms / Approximation algorithm / Random walk / 2-satisfiability
Date: 2006-02-09 03:56:19
Theoretical computer science
Computational complexity theory
Mathematics
Logic in computer science
NP-complete problems
Boolean algebra
Boolean satisfiability problem
Electronic design automation
Symposium on Discrete Algorithms
Approximation algorithm
Random walk
2-satisfiability

Curriculum Vitae: Alexis C. Kaporis Contact information Address : Phone:

Add to Reading List

Source URL: students.ceid.upatras.gr

Download Document from Source Website

File Size: 139,44 KB

Share Document on Facebook

Similar Documents

Algebra Universalis,  + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel  Adjoining units to residuated Boolean algebras

Algebra Universalis, + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel Adjoining units to residuated Boolean algebras

DocID: 1v8wA - View Document

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

DocID: 1uZJ8 - View Document

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH)  LOGICAL GEOMETRY

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH) LOGICAL GEOMETRY

DocID: 1up5i - View Document

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

DocID: 1u9q0 - View Document

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

DocID: 1rsZm - View Document