<--- Back to Details
First PageDocument Content
Probability theory / Martingale theory / Conditional expectation / Martingale / Random variable / Law / Local martingale / Independence / Wiener process / Statistics / Stochastic processes / Probability and statistics
Date: 2012-06-28 08:09:29
Probability theory
Martingale theory
Conditional expectation
Martingale
Random variable
Law
Local martingale
Independence
Wiener process
Statistics
Stochastic processes
Probability and statistics

Random ๐บ-Expectations Marcel Nutz

Add to Reading List

Source URL: www.math.columbia.edu

Download Document from Source Website

File Size: 393,40 KB

Share Document on Facebook

Similar Documents

Homework 4, Statistical Analysis I, Summer 2018 Problem 1: Suppose the random variable X can take on the values 17, 12, โˆ’10, and 23 with respective probabilities .3, .15, .2, and .35. Compute the expected value

DocID: 1uW2K - View Document

TWO AGENT MILD OPTIMIZATION NORMAN PERLMUTTER, JESSICA TAYLOR, CONNOR FLEXMAN, M. VALENTINE SMITH, ET AL 1. Two advisors with independent errors Consider an action space A. (In other words, A is a random variable

DocID: 1uQiR - View Document

Moments of Truncated Gaussians Benjamin Marlin, Mohammad Emtiyaz Khan, and Kevin Patrick Murphy University of British Columbia, Vancouver, Canada August 22, 2012 Given a Gaussian random variable x with mean ยต and varian

DocID: 1uNMa - View Document

Distributions of Functions of Normal Random Variables Version 25 Jan 2006 The Unit (or Standard) Normal The unit or standard normal random variable U is a normally distributed variable with mean zero and variance one, i.

DocID: 1uore - View Document

Statistics / Estimation theory / Statistical theory / Probability distributions / Statistical inference / Bias of an estimator / Maximum likelihood estimation / Efficient estimator / Estimator / Uniform distribution / Normal distribution / Exponential distribution

Chapter 6 Parameter Estimation Take a random variable x described by a pdf f (x): the sample space is defined to be the set of all possible values of x. The set of n independent measurements of the random variable x, {x

DocID: 1rnil - View Document