<--- Back to Details
First PageDocument Content
Automata theory / Mathematics / Probability theory / Linear temporal logic / Ω-automaton / Ordinal number / Constructible universe / Connection
Date: 2007-07-20 11:45:04
Automata theory
Mathematics
Probability theory
Linear temporal logic
Ω-automaton
Ordinal number
Constructible universe
Connection

Add to Reading List

Source URL: www.cs.qub.ac.uk

Download Document from Source Website

File Size: 223,61 KB

Share Document on Facebook

Similar Documents

Mathematical logic / Mathematics / Omega language / Tree / Wadge hierarchy / Determinacy / Symbol / Regular language / Ω-automaton / Automata theory / Formal languages / Theoretical computer science

On the topological complexity of weakly recognizable tree languages Jacques Duparc1 and Filip Murlak2? 1 Universit´e de Lausanne, Switzerland

DocID: 1guzu - View Document

Computer science / Ω-automaton / Deterministic finite automaton / Nondeterministic finite automaton / Linear temporal logic / Finite-state machine / Symbol / Büchi automaton / Automata theory / Theoretical computer science / Formal methods

How to Efficiently Translate Extensions of Temporal Logics into Alternating Automata C´esar S´ anchez1,2 and Julian Samborski-Forlese1 1

DocID: 1fGRo - View Document

Ω-automaton / Tree / Binary tree / Mathematics / Tree automaton / Büchi automaton / Automata theory / Theoretical computer science / Computer science

¨ Profile Trees for Buchi Word Automata, with Application to Determinization Seth Fogarty

DocID: 1aJuC - View Document

Theoretical computer science / Tree automaton / Computer science / Automata theory / Temporal logic / Linear temporal logic

Logic and Automata, Assignmentmarks) Construct B¨ uchi automata accepting ω-words satisfying the following LTL formulae: (a) G F X a

DocID: 1aIwO - View Document

Applied mathematics / Computer science / Regular language / Symbol / Alphabet / Ω-automaton / Formal languages / Automata theory / Mathematics

Regular Expressions for Languages over Infinite Alphabets (Extended abstract) Michael Kaminski1 and Tony Tan2 1

DocID: 1aFNF - View Document