<--- Back to Details
First PageDocument Content
Science / Linear multistep method / Integrator / Stiff equation / Numerical analysis / Numerical integration / Pseudospectral optimal control / Numerical methods for ordinary differential equations / Mathematics / Runge–Kutta methods / Applied mathematics
Date: 2013-01-16 21:24:51
Science
Linear multistep method
Integrator
Stiff equation
Numerical analysis
Numerical integration
Pseudospectral optimal control
Numerical methods for ordinary differential equations
Mathematics
Runge–Kutta methods
Applied mathematics

Accurate and stable time integrators

Add to Reading List

Source URL: www.mssanz.org.au

Download Document from Source Website

File Size: 260,08 KB

Share Document on Facebook

Similar Documents

Optimal control / Numerical analysis / Mathematical optimization / Control theory / Operations research / Spectral method / Trajectory optimization / Pseudo-spectral method / Legendre polynomials / Gauss pseudospectral method / GPOPS-II

MATEC Web of Conferences 4 2 , ) DOI: m atecconf1 1  C Owned by the authors, published by EDP Sciences, 2016 Optimal Point-to-Point Motion Planning of Flexible Parallel Manipul

DocID: 1oOC9 - View Document

Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems by Geoffrey Todd Huntington B. S. Aerospace Engineering, University of California, Los Angeles, 2001

DocID: 1oafl - View Document

Science / Linear multistep method / Integrator / Stiff equation / Numerical analysis / Numerical integration / Pseudospectral optimal control / Numerical methods for ordinary differential equations / Mathematics / Runge–Kutta methods / Applied mathematics

Accurate and stable time integrators

DocID: 18RaS - View Document

Optimal control / Cybernetics / Equations / Operations research / Pseudospectral optimal control / Trajectory optimization / Bellman equation / Stanley Osher / Chi-Wang Shu / Mathematical optimization / Control theory / Systems theory

Second Workshop on Computational Issues in Nonlinear Control Location: Monterey, California Dates: November, 7-8, 2011 Organizers: Wei Kang, Arthur Krener, William McEneaney

DocID: 14BWB - View Document

Mathematical optimization / Optimal control / Numerical software / Operations research / MATLAB / Collocation method / Control theory / Gauss pseudospectral method / PROPT / Numerical analysis / Applied mathematics / Science

PDF Document

DocID: 11xBN - View Document