First Page | Document Content | |
---|---|---|
![]() Date: 2016-03-28 14:59:23Statistics Statistical theory Probability Estimation theory Bayesian statistics Probability distributions M-estimators Maximum likelihood estimation Linear regression Posterior predictive distribution Prior probability Likelihood function | Add to Reading List |
![]() | Predictive probabilities for normal outcomes John Cook September 15, 2011 Suppose Y ∼ normal(θ, σ 2 ) and a priori θ ∼ normal(µ, τ ). After observing y1 , y2 , . . . , yn the posterior distribution on θ is normDocID: 1u4BG - View Document |
![]() | VOLUME 14 JOURNAL OF CLIMATE 1 DECEMBER 2001DocID: 1p6WL - View Document |
![]() | output/maye11bayesian.dviDocID: 1oC0g - View Document |
![]() | Bayesian Analysis, Number 4, pp. 631–652 Hierarchical Bayesian Modeling of Hitting Performance in BaseballDocID: 1nU27 - View Document |
![]() | Power Weighted Densities for Time Series DataDocID: 1nDIi - View Document |