<--- Back to Details
First PageDocument Content
Quadratic forms / Isotropic quadratic form / Quadratic polynomial / Symmetric bilinear form / Degenerate form / Orthogonal group / Bilinear map / Witt group / Inner product space / Algebra / Linear algebra / Mathematics
Date: 2012-11-27 11:57:24
Quadratic forms
Isotropic quadratic form
Quadratic polynomial
Symmetric bilinear form
Degenerate form
Orthogonal group
Bilinear map
Witt group
Inner product space
Algebra
Linear algebra
Mathematics

Add to Reading List

Source URL: www.math.miami.edu

Download Document from Source Website

File Size: 194,97 KB

Share Document on Facebook

Similar Documents

Algebra / Quadratic forms / Isotropic quadratic form / Degenerate bilinear form / Isotropy / Pfister form / U-invariant

127 Doc. Math. J. DMV On the Nonexcellence of Field Extensions F ()=F O. T. Izhboldin1

DocID: 1qOyY - View Document

Algebra / Quadratic forms / Isotropic quadratic form / Degenerate bilinear form / Isotropy / Pfister form / U-invariant

127 Doc. Math. J. DMV On the Nonexcellence of Field Extensions F ()=F O. T. Izhboldin1

DocID: 1qKCs - View Document

Speaker: Naser Talebizadeh Sardari Title: Optimal strong approximation for quadratic forms Abstract: For a non-degenerate integral quadratic form F (x1 , . . . , xd ) in 5 (or more) variables, we prove an optimal strong

DocID: 1mjed - View Document

Analytic geometry / Conic sections / Algebraic curves / Parabolas / Birational geometry / Quadratic equation / Quadratic function / Collinearity / Quadratic form / Triangle / Degenerate conic / Quadric

A note on the triangle-centered quadratic interpolation discretization of the shape operator J . Reisman (NYU), E. Grinspun (Columbia), D. Zorin (NYU) May, 2007 Abstract In this note we consider a simple shape operator d

DocID: 1kTqO - View Document

Quadratic forms / Degenerate form / Isotropic quadratic form / Bilinear form / Symmetric bilinear form / Projection / Examples of vector spaces / Vector space / Isometry / Algebra / Linear algebra / Mathematics

Arithmetic of Quadratic Forms 1 Foundation Throughout this section, F always denotes a field of characteristic different from 2.

DocID: RLkk - View Document