<--- Back to Details
First PageDocument Content
Operations research / Computational science / Numerical analysis / Linear programming / Matrix / Ordinary differential equation / Differential equation / Engineering / Numerical partial differential equations / Mathematics / Science / Applied mathematics
Date: 2013-09-10 00:58:31
Operations research
Computational science
Numerical analysis
Linear programming
Matrix
Ordinary differential equation
Differential equation
Engineering
Numerical partial differential equations
Mathematics
Science
Applied mathematics

Subject Code BSE3811 Subject Title

Add to Reading List

Source URL: www.bse.polyu.edu.hk

Download Document from Source Website

File Size: 152,89 KB

Share Document on Facebook

Similar Documents

Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models

DocID: 1tgNl - View Document

Bayesian inference for higher order ordinary differential arXiv:1505.04242v1 [math.ST] 16 May 2015 equation models Prithwish Bhaumik and Subhashis Ghosal

DocID: 1td6u - View Document

Calculus / Mathematical analysis / Mathematics / Partial differential equations / Differential equations / Multivariable calculus / Integral equation / Metric tensor / Operator theory / Method of characteristics / Heat equation

RESEARCH ON ORDINARY DIFFERENTIAL EQUATION AND FRACTIONAL DIFFERENTIAL EQUATION QU HAIDONG and LIU XUAN Department of Mathematics and Statistics

DocID: 1rstj - View Document

Mathematical analysis / Differential calculus / RungeKutta methods / Numerical analysis / Numerical methods for ordinary differential equations / Stiff equation / Truncation error / CashKarp method / Richardson extrapolation

Noname manuscript No. (will be inserted by the editor) A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control Pak-Wing Fok

DocID: 1rr6w - View Document

Mathematical analysis / Mathematics / Analysis / Interpolation / Meromorphic functions / Polynomials / Algebraic varieties / Complex analysis / Chebyshev polynomials / Chebfun / Rational function / Taylor series

COMPUTING COMPLEX SINGULARITIES OF DIFFERENTIAL EQUATIONS WITH CHEBFUN AUTHOR: MARCUS WEBB∗ AND ADVISOR: LLOYD N. TREFETHEN† Abstract. Given a solution to an ordinary differential equation (ODE) on a time interval, t

DocID: 1riMJ - View Document