<--- Back to Details
First PageDocument Content
Linear code / Binary symmetric channel / Differential equation / Berlekamp–Welch algorithm / Coding theory / Decoding methods / Polynomial
Date: 2015-05-10 00:15:02
Linear code
Binary symmetric channel
Differential equation
Berlekamp–Welch algorithm
Coding theory
Decoding methods
Polynomial

CHES 2013 Submission 205 Camera-ready Version.dvi

Add to Reading List

Source URL: eprint.iacr.org

Download Document from Source Website

File Size: 315,14 KB

Share Document on Facebook

Similar Documents

Re-encoding reformulation and application to Welch-Berlekamp algorithm Morgan Barbier ENSICAEN – GREYC July 11, 2014

DocID: 1vaUd - View Document

Theoretical computer science / Cryptography / Finite fields / Polynomials / Reed–Solomon error correction / Berlekamp–Welch algorithm / List decoding / Randomized algorithm / XTR / Coding theory / Error detection and correction / Mathematics

Optimally Robust Private Information Retrieval∗ Casey Devet Ian Goldberg University of Waterloo {cjdevet,iang}@cs.uwaterloo.ca

DocID: 19nOK - View Document

Theoretical computer science / List decoding / Reed–Solomon error correction / Linear code / Polynomial code / Forward error correction / Berlekamp–Welch algorithm / BCH code / Coding theory / Error detection and correction / Mathematics

PDF Document

DocID: 17dTh - View Document

Linear code / Binary symmetric channel / Differential equation / Berlekamp–Welch algorithm / Coding theory / Decoding methods / Polynomial

CHES 2013 Submission 205 Camera-ready Version.dvi

DocID: 12IJq - View Document

Cryptography / Theoretical computer science / Finite fields / Polynomials / Reed–Solomon error correction / List decoding / Berlekamp–Welch algorithm / Randomized algorithm / XTR / Coding theory / Error detection and correction / Mathematics

Optimally Robust Private Information Retrieval∗ Casey Devet Ian Goldberg University of Waterloo {cjdevet,iang}@cs.uwaterloo.ca

DocID: YxMm - View Document