<--- Back to Details
First PageDocument Content
Topology / String theory / Complex manifolds / Vector bundles / Homological algebra / Calabi–Yau manifold / Hodge structure / Mirror symmetry / Ample line bundle / Abstract algebra / Geometry / Algebraic geometry
Date: 2009-09-10 07:50:43
Topology
String theory
Complex manifolds
Vector bundles
Homological algebra
Calabi–Yau manifold
Hodge structure
Mirror symmetry
Ample line bundle
Abstract algebra
Geometry
Algebraic geometry

Add to Reading List

Source URL: www.ihes.fr

Download Document from Source Website

File Size: 75,98 KB

Share Document on Facebook

Similar Documents

Geometry / Theoretical physics / Algebraic geometry / Mathematics / String theory / Complex manifolds / Differential geometry / Mathematical physics / CalabiYau manifold / Toric variety / Homological mirror symmetry / Khler manifold

Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol–692) MIRROR SYMMETRY AND CLUSTER ALGEBRAS Paul Hacking and Sean Keel

DocID: 1xUEy - View Document

Abel-Jacobi mappings and mirror symmetry for open strings. David Morrison (UC Santa Barbara) Abstract: This is a report on work in progress with Hans Jockers and Johannes Walcher. Consider a boundary condition for open

DocID: 1v6gE - View Document

hep-tharXiv:hep-thv2 14 Jun 1996 Mirror Symmetry is T-Duality Andrew Strominger†

DocID: 1tJqO - View Document

Zooming  as  a  Didactic  Metaphor:     A  Multi-­‐layered  Depiction  of  Simon  Stevin’s   “Mirror-­‐Symmetry”   Charles  van  den  Heuvel   Huygens  In

DocID: 1sZ3D - View Document

FUNCTIONS: A RAPID REVIEW (PART 2) MATH 152, SECTION 55 (VIPUL NAIK) Difficulty level: Easy to moderate. Some of the symmetry concepts (half turn symmetry and mirror symmetry) and some of the proof techniques are likely

DocID: 1so13 - View Document