<--- Back to Details
First PageDocument Content
Integer sequences / Lucas pseudoprime / Modular arithmetic / Recurrence relations / Derrick Henry Lehmer / Prime number / Lucas sequence / Lehmer / Primality test / Mathematics / Number theory / Pseudoprimes
Date: 2007-08-14 10:56:58
Integer sequences
Lucas pseudoprime
Modular arithmetic
Recurrence relations
Derrick Henry Lehmer
Prime number
Lucas sequence
Lehmer
Primality test
Mathematics
Number theory
Pseudoprimes

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Download Document from Source Website

File Size: 95,05 KB

Share Document on Facebook

Similar Documents

Recurrence relations / Generalizations of Fibonacci numbers / Lucas number / Pell number / Lucas sequence / Summation / Padovan sequence / Lucas pseudoprime / Mathematics / Integer sequences / Fibonacci numbers

American Journal of Mathematical Analysis, 2014, Vol. 2, No. 3, 33-35 Available online at http://pubs.sciepub.com/ajma/2/3/1 © Science and Education Publishing DOI:[removed]ajma[removed]Some Identities Involving Common F

DocID: R4eb - View Document

Integer sequences / Lucas pseudoprime / Modular arithmetic / Recurrence relations / Derrick Henry Lehmer / Prime number / Lucas sequence / Lehmer / Primality test / Mathematics / Number theory / Pseudoprimes

PDF Document

DocID: QzU1 - View Document

Integer sequences / Modular arithmetic / Fermat number / Carmichael number / Prime number / Coprime / Lucas pseudoprime / Strong pseudoprime / Mathematics / Number theory / Pseudoprimes

Carmichael numbers and pseudoprimes Notes by G.J.O. Jameson Introduction Recall that Fermat’s “little theorem” says that if p is prime and a is not a multiple of p, then ap−1 ≡ 1 mod p.

DocID: cX8l - View Document

Primality tests / AKS primality test / Quadratic residue / Prime number / Lucas primality test / Generalized Riemann hypothesis / Mersenne prime / Pseudoprime / Riemann hypothesis / Mathematics / Abstract algebra / Number theory

PRIMALITY TESTING: VARIATIONS ON A THEME OF LUCAS CARL POMERANCE ´ Abstract. This survey traces an idea of Edouard Lucas that is a common element in various primality tests. These tests include those based on Fermat’s

DocID: 8Hpn - View Document

Numbers / Strong pseudoprime / Lucas pseudoprime / Primality test / Prime number / Baillie–PSW primality test / Carmichael number / Integer factorization / Probable prime / Pseudoprimes / Mathematics / Number theory

ARE THERE COUNTER-EXAMPLES TO THE BAILLIE – PSW PRIMALITY TEST? Carl Pomerance 1984 to Arjen K. Lenstra on the defense of his doctoral thesis

DocID: 8Hid - View Document