<--- Back to Details
First PageDocument Content
Internet search engines / Google / Human–computer interaction / Web search engine / Yahoo! / Enterprise search / Funnelback / European Conference on Information Retrieval / Learning to rank / Information science / Information retrieval / World Wide Web
Date: 2014-01-30 12:06:05
Internet search engines
Google
Human–computer interaction
Web search engine
Yahoo!
Enterprise search
Funnelback
European Conference on Information Retrieval
Learning to rank
Information science
Information retrieval
World Wide Web

Add to Reading List

Source URL: irsg.bcs.org

Download Document from Source Website

File Size: 737,00 KB

Share Document on Facebook

Similar Documents

Cascading Bandits: Learning to Rank in the Cascade Model Branislav Kveton Adobe Research, San Jose, CA Csaba Szepesv´ari Department of Computing Science, University of Alberta

DocID: 1uHeV - View Document

Learning to Rank By Aggregating Expert Preferences Maksims N. Volkovs Hugo Larochelle Richard S. Zemel

DocID: 1tUcb - View Document

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting Ping Li ∗ Dept. of Statistical Science Cornell University

DocID: 1tgDg - View Document

Tagging data as implicit feedback for learning-to-rank Beate Navarro Bullock Robert Jäschke Andreas Hotho

DocID: 1soOw - View Document

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries Matthew Lease1 , James Allan2, and Bruce Croft2 1 Brown Laboratory for Linguistic Information Processing (BLLIP)

DocID: 1sm9K - View Document