<--- Back to Details
First PageDocument Content
Internet search / Natural language processing / Searching / Learning to rank / Search engine / Google Search / Vertical search / Recommender system / Web query classification / Information science / Information retrieval / Internet search engines
Date: 2011-10-16 12:57:31
Internet search
Natural language processing
Searching
Learning to rank
Search engine
Google Search
Vertical search
Recommender system
Web query classification
Information science
Information retrieval
Internet search engines

Add to Reading List

Source URL: www.ils.unc.edu

Download Document from Source Website

File Size: 361,86 KB

Share Document on Facebook

Similar Documents

Cascading Bandits: Learning to Rank in the Cascade Model Branislav Kveton Adobe Research, San Jose, CA Csaba Szepesv´ari Department of Computing Science, University of Alberta

DocID: 1uHeV - View Document

Learning to Rank By Aggregating Expert Preferences Maksims N. Volkovs Hugo Larochelle Richard S. Zemel

DocID: 1tUcb - View Document

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting Ping Li ∗ Dept. of Statistical Science Cornell University

DocID: 1tgDg - View Document

Tagging data as implicit feedback for learning-to-rank Beate Navarro Bullock Robert Jäschke Andreas Hotho

DocID: 1soOw - View Document

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries Matthew Lease1 , James Allan2, and Bruce Croft2 1 Brown Laboratory for Linguistic Information Processing (BLLIP)

DocID: 1sm9K - View Document