<--- Back to Details
First PageDocument Content
Machine learning / Learning / Learning to rank / Searching / Link analysis / Ranking SVM / PageRank / Ranking function / Feature selection / Information science / Information retrieval / Statistics
Date: 2009-06-27 05:08:51
Machine learning
Learning
Learning to rank
Searching
Link analysis
Ranking SVM
PageRank
Ranking function
Feature selection
Information science
Information retrieval
Statistics

Microsoft Word - LR4IR2009.v4-camera-nomark.doc

Add to Reading List

Source URL: www.thuir.cn

Download Document from Source Website

File Size: 349,60 KB

Share Document on Facebook

Similar Documents

Learning to select a ranking function Jie Peng, Craig Macdonald, and Iadh Ounis Department of Computing Science, University of Glasgow, G12 8QQ, UK {pj, craigm, ounis}@dcs.gla.ac.uk

DocID: 1slqY - View Document

Machine learning / Statistics / Learning / Regression analysis / Structured prediction / Support vector machines / Statistical classification / Ordinal regression / Loss function / Mathematical optimization / Convex optimization / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

DocID: 1qSCZ - View Document

Probability distributions / Estimation theory / Bayesian statistics / Likelihood function / Maximum likelihood estimation / Normal distribution / Weibull distribution / Hermite distribution / Laplace distribution

IMPROVING THE RANKING SYSTEM FOR WOMEN’S PROFESIONAL TENNIS By MAYA MILADINOVIC

DocID: 1pIb9 - View Document

Regression analysis / Structured prediction / Support vector machines / Statistical classification / Machine learning / Ordinal regression / Loss function / Mathematical optimization / Hinge loss / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

DocID: 1puOe - View Document

Algebra / Mathematics / Information science / Linear algebra / Matrix theory / Recommender systems / Statistical theory / Collaborative filtering / Machine learning / Loss function / Singular value decomposition / Artificial neural network

BPR: Bayesian Personalized Ranking from Implicit Feedback Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme {srendle, freudenthaler, gantner, schmidt-thieme}@ismll.de Machine Learning Lab, Un

DocID: 1ninV - View Document