<--- Back to Details
First PageDocument Content
Learning to rank / Ranking function / Discounted cumulative gain / Information retrieval / Gradient boosting / Supervised learning / Regression analysis / Cross-validation / Support vector machine / Statistics / Machine learning / Artificial intelligence
Date: 2007-09-14 21:35:56
Learning to rank
Ranking function
Discounted cumulative gain
Information retrieval
Gradient boosting
Supervised learning
Regression analysis
Cross-validation
Support vector machine
Statistics
Machine learning
Artificial intelligence

Add to Reading List

Source URL: www.cc.gatech.edu

Download Document from Source Website

File Size: 141,67 KB

Share Document on Facebook

Similar Documents

Learning to select a ranking function Jie Peng, Craig Macdonald, and Iadh Ounis Department of Computing Science, University of Glasgow, G12 8QQ, UK {pj, craigm, ounis}@dcs.gla.ac.uk

DocID: 1slqY - View Document

Machine learning / Statistics / Learning / Regression analysis / Structured prediction / Support vector machines / Statistical classification / Ordinal regression / Loss function / Mathematical optimization / Convex optimization / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

DocID: 1qSCZ - View Document

Probability distributions / Estimation theory / Bayesian statistics / Likelihood function / Maximum likelihood estimation / Normal distribution / Weibull distribution / Hermite distribution / Laplace distribution

IMPROVING THE RANKING SYSTEM FOR WOMEN’S PROFESIONAL TENNIS By MAYA MILADINOVIC

DocID: 1pIb9 - View Document

Regression analysis / Structured prediction / Support vector machines / Statistical classification / Machine learning / Ordinal regression / Loss function / Mathematical optimization / Hinge loss / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

DocID: 1puOe - View Document

Algebra / Mathematics / Information science / Linear algebra / Matrix theory / Recommender systems / Statistical theory / Collaborative filtering / Machine learning / Loss function / Singular value decomposition / Artificial neural network

BPR: Bayesian Personalized Ranking from Implicit Feedback Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme {srendle, freudenthaler, gantner, schmidt-thieme}@ismll.de Machine Learning Lab, Un

DocID: 1ninV - View Document