<--- Back to Details
First PageDocument Content
Statistical classification / Science / Support vector machine / Latent Dirichlet allocation / Tf*idf / Relevance feedback / Statistics / Information retrieval / Statistical natural language processing
Date: 2008-12-17 14:29:54
Statistical classification
Science
Support vector machine
Latent Dirichlet allocation
Tf*idf
Relevance feedback
Statistics
Information retrieval
Statistical natural language processing

Microsoft PowerPoint - TRECVID2008-HLF-MCG-ICT-CAS [兼容模式]

Add to Reading List

Source URL: www-nlpir.nist.gov

Download Document from Source Website

File Size: 482,87 KB

Share Document on Facebook

Similar Documents

Quick and Reliable Document Alignment via TF/IDF-weighted Cosine Distance Christian Buck Philipp Koehn University of Edinburgh Center for Language and Speech Processing

DocID: 1tmqa - View Document

Tf*idf / Vector space model / Query expansion / Relevance feedback / Precision and recall / N-gram / Web search query / Relevance / Language model / Information science / Information retrieval / Science

Back to Our Roots for Retrieving Very Short Passages Nada Naji University of Neuchatel, Computer Science Dept. Rue Emile-Argand 11, 2000 Neuchatel Switzerland

DocID: 1gC3e - View Document

Learning to rank / Text Retrieval Conference / XML-Retrieval / Search engine indexing / Document retrieval / Tf*idf / Character encodings in HTML / Precision and recall / Google Search / Information science / Information retrieval / Science

Microsoft Word - _paged_overlay_100.doc

DocID: 1gzhS - View Document

Latent semantic indexing / Tf*idf / Vector space model / Feature recognition / Specific Area Message Encoding / Mind map / Information science / Information retrieval / Science

A Survey of Feature Location Techniques Julia Rubin and Marsha Chechik Abstract Feature location techniques aim at locating software artifacts that implement a specific program functionality, a.k.a. a feature. These tech

DocID: 1gwU0 - View Document

Natural language processing / Economic model / Tf*idf / Artificial intelligence / Model theory / Fuzzy retrieval / Information science / Information retrieval / Science

Splitting Models Using Information Retrieval and Model Crawling Techniques Daniel Str¨uber1 , Julia Rubin2,3 , Gabriele Taentzer1 , and Marsha Chechik3 1 Philipps-Universit¨at Marburg, Germany

DocID: 1gwdL - View Document