<--- Back to Details
First PageDocument Content
Internet search / Natural language processing / Searching / Learning to rank / Search engine / Google Search / Vertical search / Recommender system / Web query classification / Information science / Information retrieval / Internet search engines
Date: 2011-10-16 12:57:31
Internet search
Natural language processing
Searching
Learning to rank
Search engine
Google Search
Vertical search
Recommender system
Web query classification
Information science
Information retrieval
Internet search engines

Add to Reading List

Source URL: www.ils.unc.edu

Download Document from Source Website

File Size: 361,86 KB

Share Document on Facebook

Similar Documents

Collective intelligence / Information systems / Information science / Information / E-commerce / Computing / Recommender system / Cold start / Food / Preference elicitation / Nutrition / Personalization

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1xVQo - View Document

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1tE3G - View Document

Privacy Assessment of Data Flow Graphs for an Advanced Recommender System in the Smart Grid Fabian Knirsch1 , Dominik Engel1 , Cristian Neureiter1 , Marc Frincu2 , and Viktor Prasanna2 1

DocID: 1sXaB - View Document

A Novel Recommender System in IoT Remo Manuel Frey1, Runhua Xu1, and Alexander Ilic2 I. ABSTRACT In Internet of Things (IoT), selling smart physical objects together with a compatible mobile app becomes an upcoming

DocID: 1sIQs - View Document

RiVal – A Toolkit to Foster Reproducibility in Recommender System Evaluation Alan Said Alejandro Bellogín

DocID: 1sgiJ - View Document