<--- Back to Details
First PageDocument Content
Differential geometry / Multivariable calculus / Mathematical optimization / Coordinate systems / Ballistics / Lagrange multiplier / Calculus of variations / Sphere / Cartesian coordinate system / Geometry / Mathematics / Physics
Date: 2014-12-17 20:31:29
Differential geometry
Multivariable calculus
Mathematical optimization
Coordinate systems
Ballistics
Lagrange multiplier
Calculus of variations
Sphere
Cartesian coordinate system
Geometry
Mathematics
Physics

arXiv:1412.5541v1 [physics.class-ph] 13 Dec 2014

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 224,44 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Mathematics / Calculus / Multivariable calculus / Differential calculus / Convex analysis / Mathematical optimization / Derivative / Lagrange multiplier / Quasiconvex function / Hessian matrix / Gradient

REVIEW SHEET FOR FINAL: ADVANCED MATH 195, SECTION 59 (VIPUL NAIK) To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet to all review sessions. 1. Directional derivatives and gr

DocID: 1rrJ2 - View Document

Mathematical analysis / Mathematics / Analysis / Differential geometry / Differential calculus / Multivariable calculus / Generalizations of the derivative / Mathematical optimization / Derivative / Tangent space / Directional derivative / Lagrange multiplier

LAGRANGE MULTIPLIERS MATH 195, SECTION 59 (VIPUL NAIK) Corresponding material in the book: Section 14.8 What students should definitely get: The Lagrange multiplier condition (one constraint, two constraints and in princ

DocID: 1rgkS - View Document

Mathematical optimization / Mathematical analysis / Analysis / Mathematics / Shape optimization / Constraint / Constrained optimization / Feasible region / Optimization problem / Lagrange multiplier / Penalty method

Interactive Design Exploration for Constrained Meshes Bailin Deng∗, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg, Mark Pauly Computer Graphics and Geometry Laboratory, EPFL, CH-1015 Lausanne, Switz

DocID: 1r5Ee - View Document

Mathematical optimization / Mathematical analysis / Analysis / Mathematics / Trajectory optimization / Nonlinear programming / KarushKuhnTucker conditions / Automatic differentiation / Lagrange multiplier / BroydenFletcherGoldfarbShanno algorithm / Hessian matrix / Linear programming

Higher-Order Derivatives in Engineering Applications

DocID: 1r00C - View Document

Mathematical analysis / Numerical analysis / Mathematical optimization / Multivariable calculus / Convex analysis / Stochastic optimization / Convex optimization / Stochastic gradient descent / Hessian matrix / Gradient descent / Lagrange multiplier / Higher-order singular value decomposition

JMLR: Workshop and Conference Proceedings vol 40:1–46, 2015 Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition Rong Ge

DocID: 1qai5 - View Document