<--- Back to Details
First PageDocument Content
Mathematics / Basic Linear Algebra Subprograms / LAPACK / Matrix / Symmetric matrix / Triangular matrix / SAXPY / Rank / Kernel / Algebra / Linear algebra / Numerical linear algebra
Date: 2003-10-21 17:50:58
Mathematics
Basic Linear Algebra Subprograms
LAPACK
Matrix
Symmetric matrix
Triangular matrix
SAXPY
Rank
Kernel
Algebra
Linear algebra
Numerical linear algebra

Numerical Linear Algebra Software Michael C. Grant

Add to Reading List

Source URL: www.stanford.edu

Download Document from Source Website

File Size: 138,50 KB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Matrices / Symmetric matrix / Tridiagonal matrix / Numerical linear algebra / Lie groups / Differential geometry

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS

DocID: 1xV4O - View Document

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS GEORGE A. HAGEDORN AND CAROLINE LASSER Abstract. We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property f

DocID: 1sfqQ - View Document

DATA COMPRESSION AND CRITICAL POINTS DETECTION USING NORMALIZED SYMMETRIC SCATTERED MATRIX Khagendra Thapa B.Sc. B.Sc(Hons) CNAA, M.Sc.E. M.S. Ph.D. Department of Surveying and MappingFenis State University Big Rapids, M

DocID: 1rAFN - View Document

Algebra / Linear algebra / Mathematics / Matrices / Matrix theory / Matrix / Determinant / Square matrix / Symmetric matrix / Hermitian matrix / Diagonalizable matrix / Integer matrix

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1rixu - View Document

Algebra / Mathematics / Linear algebra / Matrix theory / Spectral theory / Matrices / Homogeneous polynomials / Eigenvalues and eigenvectors / Matrix / Symmetric matrix / Spectrum / Determinant

Matrix polynomials and structured linearizations. Advisor: Maria Isabel Bueno Cachadina Let P (λ) = Ak λk + Ak−1 λk−1 + · · · + A0

DocID: 1rhAl - View Document