<--- Back to Details
First PageDocument Content
Conjectures / Dirichlet character / Dirichlet L-function / Arithmetic function / Riemann hypothesis / Riemann zeta function / Generalized Riemann hypothesis / Spectral theory of ordinary differential equations / Mathematical analysis / Mathematics / Analytic number theory
Date: 2013-12-02 07:06:07
Conjectures
Dirichlet character
Dirichlet L-function
Arithmetic function
Riemann hypothesis
Riemann zeta function
Generalized Riemann hypothesis
Spectral theory of ordinary differential equations
Mathematical analysis
Mathematics
Analytic number theory

PDF file of the Manuscript[removed]

Add to Reading List

Source URL: www.ias.ac.in

Download Document from Source Website

File Size: 488,04 KB

Share Document on Facebook

Similar Documents

Computer arithmetic / Arithmetic / Mathematics / Computer architecture / Rounding / IEEE 754 / Double-precision floating-point format / Interval arithmetic / Significant figures / NaN / Sine / Signed zero

Proposal for a Standardization of Mathematical Function Implementation in Floating-Point Arithmetic David Defour Guillaume Hanrot Jean-Michel Muller

DocID: 1xU7F - View Document

HEIGHTS ON PROJECTIVE SPACES AND DYNAMICAL SYSTEMS Height theory is among the fundamental tools frequently used in number theory. A height function measures the arithmetic complexity of a point. It translates thus a geom

DocID: 1vdqu - View Document

Function Interval Arithmetic Jan Duracz1 , Amin Farjudian2 , Michal Koneˇcný3 , and Walid Taha4 1 , http://duracz.net/jan

DocID: 1sRd8 - View Document

Sato theory, p-adic tau function and arithmetic geometry Takao Yamazaki Tohoku University March 19, 2010

DocID: 1sKoW - View Document

Mathematics / Mathematical analysis / Number theory / Analytic number theory / Bernhard Riemann / Conjectures / Riemann zeta function / Arithmetic functions / Riemann hypothesis / Z function / RiemannSiegel formula / Bernoulli number

Numbers, constants and computation 1 Numerical evaluation of the Riemann Zeta-function

DocID: 1rmQO - View Document