<--- Back to Details
First PageDocument Content
Data analysis / Singular value decomposition / Kernel principal component analysis / Signal processing / Principal component analysis / Spectral clustering / Cluster analysis / K-means clustering / Dimension reduction / Statistics / Multivariate statistics / Machine learning
Date: 2006-12-15 06:20:01
Data analysis
Singular value decomposition
Kernel principal component analysis
Signal processing
Principal component analysis
Spectral clustering
Cluster analysis
K-means clustering
Dimension reduction
Statistics
Multivariate statistics
Machine learning

Add to Reading List

Source URL: ranger.uta.edu

Download Document from Source Website

File Size: 248,37 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Linear algebra / Multivariate statistics / Hilbert space / Operator theory / Geostatistics / Kernel method / Transfer RNA / Kernel principal component analysis / Positive-definite kernel / Kernel

Genome Informatics 13: 112–Marginalized Kernels for RNA Sequence Data Analysis Taishin Kin

DocID: 1riZQ - View Document

Algebra / Mathematics / Linear algebra / Numerical linear algebra / Dimension reduction / Functional analysis / Multivariate statistics / Linear map / Singular value decomposition / Kernel method / Principal component analysis / Kernel

Ghostscript wrapper for X:ersV2011er_final.pdf

DocID: 1r9tq - View Document

Algebra / Mathematics / Statistics / Multivariate statistics / Linear algebra / Functional analysis / Dimension reduction / Geostatistics / Kernel principal component analysis / Nonlinear dimensionality reduction / Principal component analysis / Dimensionality reduction

Semi-Supervised Dimensionality Reduction for Analyzing High-Dimensional Data with Constraints Su Yan∗∗ IBM Almaden Research Center, 650 Harry Rd San Jose, CA 95120, USA Sofien Bouaziz

DocID: 1qBTn - View Document

Algebra / Mathematics / Linear algebra / Multivariate statistics / Matrix theory / Dimension reduction / Interpolation / Principal component analysis / Eigenvalues and eigenvectors / Kernel principal component analysis / Eigendecomposition of a matrix / Radial basis function

DOI: j01783.x COMPUTER GRAPHICS forum

DocID: 1qyoO - View Document

Algebra / Mathematics / Linear algebra / Functional analysis / Numerical linear algebra / Abstract algebra / Matrix theory / Matrix / Kernel / Linear map / Eigenvalues and eigenvectors / Principal component analysis

Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion Onur C. Hamsici1 , Paulo F.U. Gotardo2 , and Aleix M. Martinez2 1 Qualcomm Research, San Diego, CA, USA

DocID: 1qrSz - View Document