<--- Back to Details
First PageDocument Content
Kernel regression / Cluster analysis / Density estimation / Mean-shift / Gaussian function / Kernel / Fuzzy clustering / Robust statistics / Statistics / Non-parametric statistics / Kernel density estimation
Date: 2010-08-03 01:36:50
Kernel regression
Cluster analysis
Density estimation
Mean-shift
Gaussian function
Kernel
Fuzzy clustering
Robust statistics
Statistics
Non-parametric statistics
Kernel density estimation

doi:[removed]j.patcog[removed]

Add to Reading List

Source URL: www2.math.cycu.edu.tw

Download Document from Source Website

File Size: 5,82 MB

Share Document on Facebook

Similar Documents

Image segmentation / Computer vision / Memory segmentation / Mean shift / Noise reduction / Rigid motion segmentation / Region growing

Interactive System for Efficient Video Cartooning Sung-Soo Hong◦ , Jong-Chul Yoon† , In-Kwon Lee‡ , and Siwoo Byun∗ ◦,†,‡ Dept. of Computer Science, Yonsei University, Korea

DocID: 1pGgG - View Document

Computer vision / Estimation theory / Image segmentation / Image processing / Mixture model / Mean shift / Expectationmaximization algorithm / Mode / Generalised Hough transform / Video Sequences Saliency Map

¨ ETH Zurich Computer Science Department Prof. Marc Pollefeys Prof. Luc Van Gool

DocID: 1pDwX - View Document

Image processing / Computer vision / Conservation and restoration / Inpainting / Image segmentation / CAPTCHA / Levenshtein distance / Edit distance / Mean shift

PDF Document

DocID: 1poUu - View Document

Computer vision / Estimation theory / Image segmentation / Image processing / Mixture model / Mean shift / Expectationmaximization algorithm / Mode / Generalised Hough transform / Video Sequences Saliency Map

¨ ETH Zurich Computer Science Department Prof. Marc Pollefeys Prof. Luc Van Gool

DocID: 1pn1r - View Document

Computing / Parallel computing / Computer programming / Statistics / K-means clustering / K-nearest neighbors algorithm / Computer cluster / Mean shift / CURE data clustering algorithm

Microsoft PowerPoint - cs677s15_5.pptx

DocID: 1oeK8 - View Document