<--- Back to Details
First PageDocument Content
Kepler conjecture / Sphere packing / Thomas Callister Hales / Packing problem / Honeycomb / Weaire–Phelan structure / Hexagon / Johannes Kepler / Voronoi diagram / Geometry / Discrete geometry / Mathematics
Date: 2004-12-09 11:32:52
Kepler conjecture
Sphere packing
Thomas Callister Hales
Packing problem
Honeycomb
Weaire–Phelan structure
Hexagon
Johannes Kepler
Voronoi diagram
Geometry
Discrete geometry
Mathematics

Book Review Kepler’s Conjecture

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 107,69 KB

Share Document on Facebook

Similar Documents

Abstract Submitted for the MAR16 Meeting of The American Physical Society Bidispersed Sphere Packing on Spherical Surfaces1 TIMOTHY ATHERTON, ANDREW MASCIOLI, CHRISTOPHER BURKE, Tufts University

DocID: 1ttES - View Document

393 Documenta Math. On Packing Spheres into Containers About Kepler’s Finite Sphere Packing Problem

DocID: 1sL2Z - View Document

The sphere packing problem in dimension 8 Maryna S. Viazovska arXiv:1603.04246v1 [math.NT] 14 Mar 2016

DocID: 1sa5K - View Document

Geometry / Mathematics / Space / Circles / Elementary geometry / Conformal geometry / Euclidean plane geometry / Discrete geometry / Sphere packing / Circle packing / Sphere / Apollonian circles

Illinois Geometry Lab Apollonian Circle Packing Density Author: Joseph Vandehey

DocID: 1rarG - View Document

Mathematics / Geometry / Discrete geometry / NP-complete problems / Circle packing / Conjectures / Operations research / Sphere packing / Independent set / Tammes problem / Kepler conjecture / Semidefinite programming

Moment methods in extremal geometry David de Laat Delft University of Technology (Joint with Fernando Oliveira and Frank Vallentin) 51st Dutch Mathematical Congress

DocID: 1r5LB - View Document