<--- Back to Details
First PageDocument Content
Dodecahedral conjecture / Voronoi diagram / Sphere packing / Packing problem / Honeycomb / Hexagonal tiling / Tessellation / Close-packing of equal spheres / Rhombic dodecahedron / Geometry / Discrete geometry / Kepler conjecture
Date: 2000-02-28 14:57:47
Dodecahedral conjecture
Voronoi diagram
Sphere packing
Packing problem
Honeycomb
Hexagonal tiling
Tessellation
Close-packing of equal spheres
Rhombic dodecahedron
Geometry
Discrete geometry
Kepler conjecture

fea-hales.qxp[removed]

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 145,11 KB

Share Document on Facebook

Similar Documents

Abstract Submitted for the MAR16 Meeting of The American Physical Society Bidispersed Sphere Packing on Spherical Surfaces1 TIMOTHY ATHERTON, ANDREW MASCIOLI, CHRISTOPHER BURKE, Tufts University

DocID: 1ttES - View Document

393 Documenta Math. On Packing Spheres into Containers About Kepler’s Finite Sphere Packing Problem

DocID: 1sL2Z - View Document

The sphere packing problem in dimension 8 Maryna S. Viazovska arXiv:1603.04246v1 [math.NT] 14 Mar 2016

DocID: 1sa5K - View Document

Geometry / Mathematics / Space / Circles / Elementary geometry / Conformal geometry / Euclidean plane geometry / Discrete geometry / Sphere packing / Circle packing / Sphere / Apollonian circles

Illinois Geometry Lab Apollonian Circle Packing Density Author: Joseph Vandehey

DocID: 1rarG - View Document

Mathematics / Geometry / Discrete geometry / NP-complete problems / Circle packing / Conjectures / Operations research / Sphere packing / Independent set / Tammes problem / Kepler conjecture / Semidefinite programming

Moment methods in extremal geometry David de Laat Delft University of Technology (Joint with Fernando Oliveira and Frank Vallentin) 51st Dutch Mathematical Congress

DocID: 1r5LB - View Document