<--- Back to Details
First PageDocument Content
Mathematics / Braid group / Joan Birman / Finite type invariant / Mapping class group / Birman / Jones polynomial / Knot invariant / Knot polynomial / Knot theory / Topology / Abstract algebra
Date: 2006-12-11 08:43:40
Mathematics
Braid group
Joan Birman
Finite type invariant
Mapping class group
Birman
Jones polynomial
Knot invariant
Knot polynomial
Knot theory
Topology
Abstract algebra

Interview with Joan Birman

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 1,90 MB

Share Document on Facebook

Similar Documents

Algebra / Knot theory / Mathematics / Matrix theory / Jones polynomial / Polynomials / Braid group / C*-algebra / Trace

The Alexander and Jones Polynomials Through Representations of Rook Algebras Stephen Bigelow∗, Eric Ramos†, Ren Yi‡ arXiv:1110.0538v1 [math.GT] 3 Oct 2011

DocID: 1quuL - View Document

Homotopy theory / Knot theory / Geometric topology / Algebraic topology / Topology / Braid theory / Configuration space / Braid group / Mapping class group / Spectrum / Manifold / Fundamental group

Configuration Spaces The n-th ordered configuration space C˜ n (M ) of a space M is the space of all n-tupels (ζ1 , . . . , ζn ) of distinct points in M ; and the quotient C n (M ) = C˜ n (M )/Sn by the free action o

DocID: 1ph0x - View Document

Differential forms / Closed and exact differential forms / Lemmas / Constructible universe / Braid group

391 Documenta Math. Parametrized Braid Groups of Chevalley Groups Jean-Louis Loday1 and Michael R. Stein2

DocID: 1oIzO - View Document

Knot theory / Abstract algebra / Order theory / Functions and mappings / Distributive property / Braid group / Braid theory / Racks and quandles / Model theory / Embedding / Algebra / Laver table

Title Abstract Definitions and Examples

DocID: 1o61h - View Document

A Practical Attack on Some Braid Group Based Cryptographic Primitives Dennis Hofheinz and Rainer Steinwandt IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth, Fakult¨ at f¨

DocID: 1nntL - View Document