<--- Back to Details
First PageDocument Content
Moonshine theory / Group theory / Nonassociative algebra / Conformal field theory / Monstrous moonshine / Monster Lie algebra / Monster vertex algebra / J-invariant / Representation theory / Abstract algebra / Algebra / Lie algebras
Date: 2002-09-18 15:13:48
Moonshine theory
Group theory
Nonassociative algebra
Conformal field theory
Monstrous moonshine
Monster Lie algebra
Monster vertex algebra
J-invariant
Representation theory
Abstract algebra
Algebra
Lie algebras

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 53,37 KB

Share Document on Facebook

Similar Documents

Group theory / Lie groups / Monster Lie algebra / Kac–Moody algebra / Cartan subalgebra / Monster vertex algebra / E8 / En / Vertex operator algebra / Abstract algebra / Lie algebras / Algebra

A Monster Lie Algebra? Chapter 30 of “Sphere packing, lattices and groups” by Conway and Sloane, and Adv. in Math[removed]), no. 1, 75–79. R. E. Borcherds, J. H. Conway, L. Queen and N. J. A. Sloane We define a re

DocID: 8KKq - View Document

Lie algebras / Moonshine theory / Conformal field theory / Nonassociative algebra / Vertex operator algebra / Monstrous moonshine / Weight / Monster vertex algebra / Monster Lie algebra / Abstract algebra / Algebra / Mathematics

Modular Moonshine II. 24 July 1994, corrected 19 Sept 1995 Duke Math. J[removed]no. 2, [removed]Richard E. Borcherds,∗

DocID: 8Knp - View Document

Lie algebras / Moonshine theory / Representation theory of Lie groups / Quadratic forms / Lie groups / Monster Lie algebra / Kac–Moody algebra / Vertex operator algebra / Weight / Abstract algebra / Algebra / Mathematics

The monster Lie algebra. Adv. Math. Vol 83, No. 1, September 1990, p[removed]Richard E. Borcherds, Department of pure mathematics and mathematical statistics, 16 Mill Lane, Cambridge CB2 1SB, England. We calculate the mu

DocID: 8JOZ - View Document

Monster Lie algebra / Kac–Moody algebra / Weyl character formula / Monstrous moonshine / Simple Lie group / Vertex operator algebra / En / Representation theory / E8 / Abstract algebra / Lie algebras / Lie groups

Introduction to the monster Lie algebra. Groups, Combinatorics, and geometry, p. 99–107, edited by M. W. Liebeck and J. Saxl, L.M.S. lecture note series 165, C.U.P[removed]Richard E. Borcherds, I would like to thank J.

DocID: 8Jxv - View Document

Moonshine theory / Lie groups / Modular forms / Nonassociative algebra / Monstrous moonshine / Generalized Kac–Moody algebra / Monster Lie algebra / Monster vertex algebra / Richard Borcherds / Abstract algebra / Algebra / Lie algebras

Problems in moonshine. Richard E. Borcherds, ∗ Mathematics department, Evans Hall #3840, University of California at Berkeley, CA[removed]U. S. A. e-mail: [removed] www home page www.math.berkeley.edu/˜

DocID: 8IR1 - View Document