<--- Back to Details
First PageDocument Content
Iterative method / Krylov subspace / Conjugate gradient method / Generalized minimal residual method / Preconditioner / Gauss–Seidel method / Biconjugate gradient method / Successive over-relaxation / Mathematical optimization / Numerical analysis / Numerical linear algebra / Mathematics
Date: 2015-04-02 12:13:45
Iterative method
Krylov subspace
Conjugate gradient method
Generalized minimal residual method
Preconditioner
Gauss–Seidel method
Biconjugate gradient method
Successive over-relaxation
Mathematical optimization
Numerical analysis
Numerical linear algebra
Mathematics

End of linear algebraic systems and finite differences

Add to Reading List

Source URL: ocw.mit.edu

Download Document from Source Website

File Size: 1,00 MB

Share Document on Facebook

Similar Documents

Actuarial science / Financial risk / Mathematical finance / Value at risk / Applied mathematics / Object-oriented programming languages / Economy / Money / Biconjugate gradient stabilized method

One day of life in V8 Vyacheslav Egorov Can V8 do that?! Vyacheslav Egorov

DocID: 1qxHK - View Document

Numerical linear algebra / Krylov subspace / Generalized minimal residual method / Iterative method / Biconjugate gradient stabilized method / Preconditioner / Matrix / Lis / Sparse matrix / Conjugate gradient method / IML++ / Arnoldi iteration

Efficiency of general Krylov methods on GPUs – An experimental study Hartwig Anzt, Jack Dongarra University of Tennessee Knoxville, TN, USA {hanzt,dongarra}@icl.utk.edu

DocID: 1puu9 - View Document

Numerical linear algebra / Abstract algebra / Operator theory / Matrix theory / Krylov subspace / Generalized minimal residual method / Biconjugate gradient stabilized method / Lp space / Vector space / Algebra / Mathematics / Linear algebra

DELFT UNIVERSITY OF TECHNOLOGY REPORTExploiting BiCGstab(ℓ) strategies to induce dimension reduction Gerard L.G. Sleijpen and Martin B. van Gijzen

DocID: 1g3wY - View Document

Numerical linear algebra / Matrix theory / Operator theory / Singular value decomposition / Generalized minimal residual method / Iterative method / Krylov subspace / Biconjugate gradient stabilized method / Eigenvalues and eigenvectors / Algebra / Mathematics / Linear algebra

DELFT UNIVERSITY OF TECHNOLOGY REPORTOn the Convergence of GMRES with Invariant-Subspace Deflation M.C. Yeung, J.M. Tang, and C. Vuik

DocID: 1fFFV - View Document

Preconditioner / Conjugate gradient method / Iterative method / Generalized minimal residual method / Biconjugate gradient method / Algorithm / Numerical linear algebra / Mathematics / Applied mathematics

DELFT UNIVERSITY OF TECHNOLOGY REPORTExploiting the flexibility of IDR(s) for grid computing Martin B. van Gijzen and Tijmen P. Collignon

DocID: 1fuli - View Document