<--- Back to Details
First PageDocument Content
Numerical analysis / Partial differential equations / Iterative methods / Computational science / Dynamical systems / Differential equation / Ordinary differential equation / Nonlinear system / Method of lines / Calculus / Mathematical analysis / Mathematics
Date: 2010-03-29 15:28:14
Numerical analysis
Partial differential equations
Iterative methods
Computational science
Dynamical systems
Differential equation
Ordinary differential equation
Nonlinear system
Method of lines
Calculus
Mathematical analysis
Mathematics

BOOK REVIEWS 397 BULLETIN(New Series)OF THE AMERICANMATHEMATICALSOCIETY

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 294,22 KB

Share Document on Facebook

Similar Documents

Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models

DocID: 1tgNl - View Document

Bayesian inference for higher order ordinary differential arXiv:1505.04242v1 [math.ST] 16 May 2015 equation models Prithwish Bhaumik and Subhashis Ghosal

DocID: 1td6u - View Document

Calculus / Mathematical analysis / Mathematics / Partial differential equations / Differential equations / Multivariable calculus / Integral equation / Metric tensor / Operator theory / Method of characteristics / Heat equation

RESEARCH ON ORDINARY DIFFERENTIAL EQUATION AND FRACTIONAL DIFFERENTIAL EQUATION QU HAIDONG and LIU XUAN Department of Mathematics and Statistics

DocID: 1rstj - View Document

Mathematical analysis / Differential calculus / RungeKutta methods / Numerical analysis / Numerical methods for ordinary differential equations / Stiff equation / Truncation error / CashKarp method / Richardson extrapolation

Noname manuscript No. (will be inserted by the editor) A Linearly Fourth Order Multirate Runge-Kutta Method with Error Control Pak-Wing Fok

DocID: 1rr6w - View Document

Mathematical analysis / Mathematics / Analysis / Interpolation / Meromorphic functions / Polynomials / Algebraic varieties / Complex analysis / Chebyshev polynomials / Chebfun / Rational function / Taylor series

COMPUTING COMPLEX SINGULARITIES OF DIFFERENTIAL EQUATIONS WITH CHEBFUN AUTHOR: MARCUS WEBB∗ AND ADVISOR: LLOYD N. TREFETHEN† Abstract. Given a solution to an ordinary differential equation (ODE) on a time interval, t

DocID: 1riMJ - View Document