<--- Back to Details
First PageDocument Content
Numerical linear algebra / Matrix theory / Linear algebra / Mathematical physics / Numerical analysis / Generalized minimal residual method / Lloyd N. Trefethen / Matrix decomposition / Singular value decomposition / Matrix / Iterative method / Eigenvalues and eigenvectors
Date: 2014-08-21 18:45:30
Numerical linear algebra
Matrix theory
Linear algebra
Mathematical physics
Numerical analysis
Generalized minimal residual method
Lloyd N. Trefethen
Matrix decomposition
Singular value decomposition
Matrix
Iterative method
Eigenvalues and eigenvectors

Math 515, Numerical Analysis Fall 2014 ProfessorOfficeOffice hours ...

Add to Reading List

Source URL: www.mathcs.emory.edu

Download Document from Source Website

File Size: 89,48 KB

Share Document on Facebook

Similar Documents

A spatially adaptive iterative method for a class of nonlinear operator eigenproblems Elias Jarlebring and Stefan G¨uttel NovemberMIMS EPrint:

DocID: 1sXdd - View Document

GPGCD: An Iterative Method for Calculating Approximate GCD of Univariate polynomials Akira Terui Graduate School of Pure and Applied Sciences

DocID: 1rVLX - View Document

Lab Exercise: Iterative Newton method GEOS 626: Applied Seismology, Carl Tape GEOS 627: Inverse Problems and Parameter Estimation, Carl Tape Last compiled: February 25, 2015 Instructions

DocID: 1rE6x - View Document

Numerical linear algebra / Mathematics / Preconditioner / Mathematical analysis / Iterative method / Generalized minimal residual method / Optimal control / Computational science

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Sparse Preconditioning for Model Predictive Control Knyazev, A.; Malyshev, A. TR2016-046

DocID: 1rdHo - View Document

Numerical analysis / Numerical linear algebra / Mathematics / Theoretical computer science / Preconditioner / Graph partition / Basic Linear Algebra Subprograms / Sparse matrix / Iterative method

PSBLAS 2.4 & MLD2P4 1.2: Sparse Computations and Iterative Solvers on Parallel Computers PSBLAS 2.4 &

DocID: 1qZa8 - View Document