<--- Back to Details
First PageDocument Content
Computational statistics / Isomap / Nonlinear dimensionality reduction / Multidimensional scaling / Principal component analysis / Manifold / Geodesic / Topological manifold / Differentiable manifold / Statistics / Multivariate statistics / Dimension reduction
Date: 2004-04-04 07:03:40
Computational statistics
Isomap
Nonlinear dimensionality reduction
Multidimensional scaling
Principal component analysis
Manifold
Geodesic
Topological manifold
Differentiable manifold
Statistics
Multivariate statistics
Dimension reduction

Add to Reading List

Source URL: www-clmc.usc.edu

Download Document from Source Website

File Size: 784,04 KB

Share Document on Facebook

Similar Documents

CorrelatedMultiples: Spatially Coherent Small Multiples with Constrained Multidimensional Scaling Xiaotong Liu, Yifan Hu, Stephen North, Teng-Yok Lee, Han-Wei Shen Fig. 1. The Dow Jones Industrial Average (DJIA) from 189

DocID: 1vkcw - View Document

A Fast Approximation to Multidimensional Scaling Tynia Yang1 , Jinze Liu1 , Leonard McMillan1 , and Wei Wang1 University of Chapel Hill at North Carolina, Chapel Hill NC 27599, USA {tynia, liuj, mcmillan, weiwang}@cs.unc

DocID: 1v2X3 - View Document

A Fast Approximation to Multidimensional Scaling Tynia Yang1 , Jinze Liu1 , Leonard McMillan1 , and Wei Wang1 University of Chapel Hill at North Carolina, Chapel Hill NC 27599, USA {tynia, liuj, mcmillan, weiwang}@cs.unc

DocID: 1uBs1 - View Document

Interpolative Multidimensional Scaling Techniques for the Identification of Clusters in Very Large Sequence Sets Adam Hughes1, §, Yang Ruan1,2, Saliya Ekanayake1,2, Seung-Hee Bae1,2, Qunfeng Dong3, Mina Rho2, Judy Qiu1,

DocID: 1tqLN - View Document

Semantics / Cognition / Cognitive science / Academia / Prototype theory / Multidimensional scaling / Recall / Semantic domain / Salience

http://dx.doi.orgFEJF2016.64.colour FROM LISTING DATA TO SEMANTIC MAPS: CROSS-LINGUISTIC COMMONALITIES IN COGNITIVE REPRESENTATION OF COLOUR Mari Uusküla, David Bimler

DocID: 1rrnL - View Document