<--- Back to Details
First PageDocument Content
Mathematical analysis / Nonlinear Schrödinger equation / Differential equation / Inverse scattering transform / Schrödinger equation / Soliton / Nonlinear system / EqWorld / Korteweg–de Vries equation / Calculus / Physics / Partial differential equations
Date: 2005-05-04 00:33:00
Mathematical analysis
Nonlinear Schrödinger equation
Differential equation
Inverse scattering transform
Schrödinger equation
Soliton
Nonlinear system
EqWorld
Korteweg–de Vries equation
Calculus
Physics
Partial differential equations

Add to Reading List

Source URL: eqworld.ipmnet.ru

Download Document from Source Website

File Size: 48,19 KB

Share Document on Facebook

Similar Documents

Zaher Hani* (), 251 Mercer Street, New York, NYOut-of-equilibrium dynamics for the nonlinear Schrodinger equation. Preliminary report. I will discuss some recent progress on results

DocID: 1uG2B - View Document

GLOBAL EXISTENCE AND SCATTERING FOR ROUGH SOLUTIONS OF A NONLINEAR SCHRODINGER EQUATION ON R3 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO

DocID: 1s8fX - View Document

Mathematical analysis / Mathematics / Calculus / Joseph Fourier / Mathematical physics / Multivariable calculus / Partial differential equation / Wave equation / Fourier transform / Sobolev inequality / Fourier series / N1

TRANSFER OF ENERGY TO HIGH FREQUENCIES IN THE CUBIC DEFOCUSING ¨ NONLINEAR SCHRODINGER EQUATION J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO

DocID: 1rtQ6 - View Document

Collapse Turbulence in Nonlinear Schrödinger Equation Pavel Lushnikov1,2 1 Department of Mathematics and Statistics, University of

DocID: 1o0l9 - View Document

ON COLLAPSING RING BLOW UP SOLUTIONS TO THE MASS SUPERCRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND JEREMIE SZEFTEL Abstract. We consider the nonlinear Schrödinger equation i∂t u+∆u+u|u|p−1 = 0 in dimension N ≥

DocID: 1kpGo - View Document