<--- Back to Details
First PageDocument Content
Numerical linear algebra / Householder transformation / Tridiagonal matrix / Inverse iteration / Eigenvalues and eigenvectors / Eigenvalue algorithm / Matrix / Symmetric matrix / Diagonal matrix / Algebra / Linear algebra / Mathematics
Date: 2010-07-02 11:13:00
Numerical linear algebra
Householder transformation
Tridiagonal matrix
Inverse iteration
Eigenvalues and eigenvectors
Eigenvalue algorithm
Matrix
Symmetric matrix
Diagonal matrix
Algebra
Linear algebra
Mathematics

Microsoft PowerPoint - VECPAR2010katagiri-open.pptx

Add to Reading List

Source URL: vecpar.fe.up.pt

Download Document from Source Website

File Size: 4,43 MB

Share Document on Facebook

Similar Documents

Numerical linear algebra / Householder transformation / Tridiagonal matrix / Inverse iteration / Eigenvalues and eigenvectors / Eigenvalue algorithm / Matrix / Symmetric matrix / Diagonal matrix / Algebra / Linear algebra / Mathematics

Microsoft PowerPoint - VECPAR2010katagiri-open.pptx

DocID: 14qKK - View Document

Numerical linear algebra / Matrices / Matrix theory / Transformation / Tridiagonal matrix / Lanczos algorithm / Householder transformation / Eigenvalue algorithm / Symmetric matrix / Algebra / Linear algebra / Mathematics

Computing a Matrix Function for Exponential Integrators Ya Yan Lu1 Department of Mathematics City University of Hong Kong Kowloon, Hong Kong

DocID: Ynh0 - View Document

Numerical linear algebra / Matrices / Matrix theory / QR decomposition / Sparse matrix / Matrix / Orthogonal matrix / Rank / Householder transformation / Algebra / Linear algebra / Mathematics

Multifrontal multithreaded rank-revealing sparse QR factorization Timothy Davis1 Univ. of Florida, CISE Department E301 CSE, [removed], Gainesville, FL, USA [removed]

DocID: RdKa - View Document

Numerical linear algebra / Matrices / Matrix theory / QR decomposition / Transformation / Orthogonal matrix / Householder transformation / Matrix / Factorization / Algebra / Linear algebra / Mathematics

Updating the QR factorization and the least squares problem Sven Hammarling and Craig Lucas November[removed]MIMS EPrint: [removed]

DocID: NlPU - View Document

Numerical linear algebra / QR decomposition / Matrix / Householder transformation / Kernel / Sparse matrix / Linear least squares / LAPACK / Triangular matrix / Algebra / Linear algebra / Mathematics

EFFICIENT PARALLEL NON-NEGATIVE LEAST SQUARES ON MULTI-CORE ARCHITECTURES YUANCHENG LUO AND RAMANI DURAISWAMI UNIVERSITY OF MARYLAND, COLLEGE PARK Abstract. We parallelize a version of the active-set iterative algorithm

DocID: nJHd - View Document