<--- Back to Details
First PageDocument Content
Algebra / Mathematics / Interpolation / Polynomial interpolation / Polynomials / Permutation / Jordan normal form / Pad approximant / Random self-reducibility / Pattern language
Date: 2017-06-27 04:39:37
Algebra
Mathematics
Interpolation
Polynomial interpolation
Polynomials
Permutation
Jordan normal form
Pad approximant
Random self-reducibility
Pattern language

Computing minimal interpolation bases

Add to Reading List

Source URL: perso.ens-lyon.fr

Download Document from Source Website

File Size: 1.004,24 KB

Share Document on Facebook

Similar Documents

Innovations in permutation-based crypto Joan Daemen1,2 based on joint work with Guido Bertoni3 , Seth Hoffert, Michaël Peeters1 , Gilles Van Assche1 and Ronny Van Keer1

DocID: 1vpk0 - View Document

A so ware interface for K In this note, we propose an interface to K at the level of the sponge and duplex constructions, and inside K at the level of the K - f permutation. The purpose is twofold.

DocID: 1vlQi - View Document

Juxtaposing Catalan permutation classes with monotone ones R. Brignall∗ J. Sliaˇcan∗

DocID: 1vdyZ - View Document

Exponential Sums and Permutation Polynomials Ramachandra’s birthday Exponential Sums and

DocID: 1vc68 - View Document

Farfalle and Kravatte Parallel permutation-based cryptography Guido Bertoni1 Joan Daemen1,2 Michaël Peeters1 Gilles Van Assche1 Ronny Van Keer1 1 STMicroelectronics

DocID: 1v8QE - View Document