<--- Back to Details
First PageDocument Content
Trigonometry / Integral calculus / Logarithms / Trigonometric functions / Sine / Inverse trigonometric functions / Chebyshev polynomials / Integration by substitution / Unit circle / Mathematics / Mathematical analysis / Special functions
Date: 2014-05-28 23:53:37
Trigonometry
Integral calculus
Logarithms
Trigonometric functions
Sine
Inverse trigonometric functions
Chebyshev polynomials
Integration by substitution
Unit circle
Mathematics
Mathematical analysis
Special functions

SMT[removed]Calculus Test and Solutions February 19, 2011

Add to Reading List

Source URL: sumo.stanford.edu

Download Document from Source Website

File Size: 223,90 KB

Share Document on Facebook

Similar Documents

ON AN EXTREMAL PROPERTY OF CHEBYSHEV POLYNOMIALS Eugene Remes Given a closed interval S = [a, b] of length ℓ = b − a, and two positive numbers λ = θℓ, 0 < θ < 1, and 0 < κ, we consider the following problem1 :

DocID: 1uvT2 - View Document

Contents 1. Introduction 2. Chebyshev Points and Interpolants 3. Chebyshev Polynomials and Series 4. Interpolants, Projections, and Aliasing

DocID: 1t82Y - View Document

Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis Daniel Kressner∗ Jose E. Roman†

DocID: 1rx7m - View Document

Mathematical analysis / Mathematics / Special functions / Polynomials / Orthogonal polynomials / Hermite polynomials / Generating function / Non-analytic smooth function / Chebyshev function

Generating Function and a Rodrigues Formula for the Polynomials in d–Dimensional Semiclassical Wave Packets George A. Hagedorn∗ Department of Mathematics and Center for Statistical Mechanics and Mathematical Physics

DocID: 1rj95 - View Document

Mathematical analysis / Mathematics / Analysis / Interpolation / Meromorphic functions / Polynomials / Algebraic varieties / Complex analysis / Chebyshev polynomials / Chebfun / Rational function / Taylor series

COMPUTING COMPLEX SINGULARITIES OF DIFFERENTIAL EQUATIONS WITH CHEBFUN AUTHOR: MARCUS WEBB∗ AND ADVISOR: LLOYD N. TREFETHEN† Abstract. Given a solution to an ordinary differential equation (ODE) on a time interval, t

DocID: 1riMJ - View Document