<--- Back to Details
First PageDocument Content
Mechanics / Fourier analysis / Integral transforms / Joseph Fourier / Statistical mechanics / Fourier transform / Harmonic oscillator / Correlation function / Normal mode / Mathematical analysis / Physics / Ordinary differential equations
Date: 2013-03-09 18:20:30
Mechanics
Fourier analysis
Integral transforms
Joseph Fourier
Statistical mechanics
Fourier transform
Harmonic oscillator
Correlation function
Normal mode
Mathematical analysis
Physics
Ordinary differential equations

Microsoft Word - Problem set 4

Add to Reading List

Source URL: www.chemistry2011.org

Download Document from Source Website

File Size: 48,88 KB

Share Document on Facebook

Similar Documents

EVALUATION FUNCTION TUNING VIA ORDINAL CORRELATION D. Gomboc, T. A. Marsland, M. Buro Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada {dave,tony,mburo}@cs.ualberta.ca, http://www.cs.ualb

DocID: 1tNhN - View Document

Video / Covariance and correlation / Video compression / Digital media / Media technology / High-definition television / ISO standards / Data compression / Correlation and dependence / Inter frame / Correlation function / Ratedistortion theory

New Rate Distortion Bounds for Natural Videos Based on a Texture Dependent Correlation Model in the Spatial-Temporal Domain Jing Hu and Jerry D. Gibson Department of Electrical and Computer Engineering University of Cali

DocID: 1rkNU - View Document

Statistics / Probability / Mathematical analysis / Actuarial science / Independence / Multivariate statistics / Copula / Probability distributions / Correlation and dependence / Normal distribution / Quantile function / Financial correlation

doi:j.jbankfin

DocID: 1r9CF - View Document

Covariance and correlation / Statistics / Mathematical analysis / Engineering / Correlation function / Correlation and dependence / Cross-correlation / Bone fracture / Correlation / Autocorrelation / Time series / Structural engineering

PDF Document

DocID: 1r7TB - View Document

Optics / Geometrical optics / Laboratory techniques / Physical optics / Astronomical imaging / Optical aberration / Adaptive optics / Defocus aberration / Point spread function / Fourier optics / Pupil function / Chromatic aberration

Phase aberration correction by correlation in digital holographic adaptive optics Changgeng Liu, Xiao Yu, and Myung K. Kim* Digital Holography and Microscopy Laboratory, Department of Physics University of South Florida,

DocID: 1qZpt - View Document