<--- Back to Details
First PageDocument Content
Monoidal categories / Category theory / Coalgebra / Comodule / Hopf algebra / F-coalgebra / Injective hull / Representation theory / Bialgebra / Abstract algebra / Algebra / Module theory
Monoidal categories
Category theory
Coalgebra
Comodule
Hopf algebra
F-coalgebra
Injective hull
Representation theory
Bialgebra
Abstract algebra
Algebra
Module theory

Add to Reading List

Source URL: condor.depaul.edu

Download Document from Source Website

Share Document on Facebook

Similar Documents

arXiv:0704.2522v2 [math-ph] 4 SepA Three-Parameter Hopf Deformation of the Algebra of Feynman-like Diagrams G H E Duchampa , P Blasiakb , A Horzelab , K A Pensonc , A I Solomonc,d ,

DocID: 1tmQr - View Document

Journal of Pure and Applied Algebra. © North-Holland Publishing Company THE HOPF RING FOR COMPLEX COBORDISM Douglas C. RAVENEL* Columbia University and University of Washington

DocID: 1rCpc - View Document

Algebra / Abstract algebra / Mathematics / Monoidal categories / Representation theory / Coalgebra / Bialgebra / Universal property / Hopf algebras / Lie algebras / Hopf algebroid

Kawaguchi --- Fibered products of Hopf algebras and Seifert-van Kampen theorem for semi-graphs of Tannakian categories.pdf

DocID: 1rgMI - View Document

Algebra / Mathematics / Abstract algebra / Representation theory / Monoidal categories / Harmonic analysis / C*-algebras / Quantum groups / Hopf algebra / TannakaKrein duality / Compact quantum group / Von Neumann algebra

Compact Quantum Groups Satellite conference of the 7ECM (Berlin – 15 July 2016, Alfried Krupp Wissenschaftskolleg Greifswald, Germany Program All talks are 40 minutes (except the public evening lecture).

DocID: 1rbGd - View Document

Algebra / Mathematics / Geometry / Symmetry / Representation theory / Group actions / Lie groups / Quadratic forms / Invariant subspace / Equivariant map / Orthogonal group / Symmetry in mathematics

61 Doc. Math. J. DMV Hopf-Bifurcation in Systems with Spherical Symmetry Part I : Invariant Tori

DocID: 1qWl3 - View Document