<--- Back to Details
First PageDocument Content
Sheaf theory / Sheaf / Gluing axiom / Grothendieck topology / Topos / Stalk / Functor / Initial and terminal objects / Ringed space / Category theory / Abstract algebra / Topology
Date: 2015-04-15 15:08:44
Sheaf theory
Sheaf
Gluing axiom
Grothendieck topology
Topos
Stalk
Functor
Initial and terminal objects
Ringed space
Category theory
Abstract algebra
Topology

MODULES ON SITES Contents.

Add to Reading List

Source URL: stacks.math.columbia.edu

Download Document from Source Website

File Size: 542,89 KB

Share Document on Facebook

Similar Documents

Algebraic topology / Sheaf theory / Sheaf / Differential topology / Algebraic geometry / Proj construction / Section / Ample line bundle / Gluing axiom / Abstract algebra / Topology / Algebra

Discussion Papers Department of Economics University of Copenhagen No

DocID: 17xjc - View Document

Category theory / Injective module / Injective object / Sheaf / Grothendieck topology / Injective hull / Adjoint functors / Module / Gluing axiom / Abstract algebra / Homological algebra / Algebra

INJECTIVES Contents 1. Introduction 2. Baer’s argument for modules 3. G-modules

DocID: 11SBl - View Document

Topology / Sheaf / Gluing axiom / Stalk / Grothendieck topology / Constant sheaf / Functor / Initial and terminal objects / Presheaf / Category theory / Abstract algebra / Sheaf theory

SHEAVES ON SPACES Contents 1. Introduction 2. Basic notions 3. Presheaves

DocID: 11QaZ - View Document

Sheaf theory / Functors / Algebraic geometry / Homological algebra / Sheaf / Gluing axiom / Grothendieck topology / Functor / Topos / Category theory / Abstract algebra / Mathematics

SITES AND SHEAVES Contents.

DocID: 11PXh - View Document

Algebraic topology / Homological algebra / Functors / Sheaf theory / Sheaf / Grothendieck topology / Gluing axiom / Functor / Initial and terminal objects / Abstract algebra / Category theory / Mathematics

HYPERCOVERINGS Contents 1. Introduction 2. Hypercoverings 3. Acyclicity

DocID: 11IW1 - View Document