<--- Back to Details
First PageDocument Content
Hyperboloid / Minkowski space / Duality / Geometric algebra / Point at infinity / Projective geometry / Horoball / Beltrami–Klein model / Conformal geometric algebra / Geometry / Hyperbolic geometry / Hyperbolic space
Date: 1999-04-13 14:25:24
Hyperboloid
Minkowski space
Duality
Geometric algebra
Point at infinity
Projective geometry
Horoball
Beltrami–Klein model
Conformal geometric algebra
Geometry
Hyperbolic geometry
Hyperbolic space

Add to Reading List

Source URL: geocalc.clas.asu.edu

Download Document from Source Website

File Size: 379,86 KB

Share Document on Facebook

Similar Documents

3-manifold / The Geometry Center / Beltrami–Klein model / Icosahedron / Visualization / Hyperbolic space / Tree / Hyperbolic manifold / Hyperbolic tree / Geometry / Hyperbolic geometry / Topology

Visualizing the Structure of the World Wide Web in 3D Hyperbolic Space Tamara Munzner ∗ The Geometry Center, University of Minnesota † Paul Burchard ‡ Department of Mathematics, University of Utah §

DocID: 13wR8 - View Document

Hyperbolic tree / Beltrami–Klein model / Hyperbolic / Non-Euclidean geometry / Unit disk / Radial tree / SpicyNodes / Geometry / Hyperbolic geometry / Graph drawing

A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies. John Lamping, Ramana Rao, and Peter Pirolli Xerox Palo Alto Research Center

DocID: WYzp - View Document

Axiom / Poincaré disk model / Mathematics / Model theory / Hyperbolic space / Geometry / Hyperbolic geometry / Beltrami–Klein model

Math_CS_Newsletter_2011-12

DocID: N3LH - View Document

Differential geometry / Surfaces / Differential geometers / Beltrami–Klein model / Non-Euclidean geometry / Differential geometry of surfaces / Hyperbolic space / Poincaré metric / Projective geometry / Geometry / Hyperbolic geometry / Homogeneous spaces

On Hilbert’s fourth problem arXiv:1312.3172v1 [math.HO] 11 Dec 2013

DocID: 4ooc - View Document

Parallel / Poincaré disk model / Euclidean geometry / Space / Tessellation / Ideal triangle / Nikolai Lobachevsky / Non-Euclidean geometry / Beltrami–Klein model / Geometry / Hyperbolic geometry / Hyperbolic space

Exploring Hyperbolic Space adapted from The Institute for Figuring: http://theiff.org/oexhibits/ In 1997 Cornell University mathematician Daina Taimina finally worked out how to make a

DocID: 2KsL - View Document