<--- Back to Details
First PageDocument Content
Malfatti circles / Tangent circles / Inscribed figure / Circle / Gian Francesco Malfatti / Triangle / Spherical trigonometry / Equilateral triangle / Lune / Geometry / Circles / Triangle geometry
Date: 2010-11-16 03:34:04
Malfatti circles
Tangent circles
Inscribed figure
Circle
Gian Francesco Malfatti
Triangle
Spherical trigonometry
Equilateral triangle
Lune
Geometry
Circles
Triangle geometry

Untitled

Add to Reading List

Source URL: alpha.science.unitn.it

Download Document from Source Website

File Size: 515,74 KB

Share Document on Facebook

Similar Documents

Triangle geometry / Gian Francesco Malfatti / Tangent circles / Differential geometry / Joseph Diaz Gergonne / Analytic geometry / Malfatti / Tangent / The Dining Rooms / Geometry / Circles / Malfatti circles

JEMMA LORENAT, Simon Fraser University Not set in stone: nineteenth century geometrical constructions and the Malfatti Problem In 1803, Gian Francesco Malfatti posed the problem of constructing three parallel cylinders o

DocID: S3xn - View Document

Euclidean plane geometry / Analytic geometry / Curves / Tangent / Trigonometric functions / Triangle / Tangent lines to circles / Malfatti circles / Geometry / Circles / Triangle geometry

THEOREM OF THE DAY The Six-Circles Theorem Consider a triangle with vertices A, B and C, with opposite sides a, b and c, respectively. Construct six circles, C0, . . . , C5, in the triangle, with the tangencies shown in

DocID: 8TQm - View Document

Circles / Triangles / Cyclic quadrilateral / Bicentric quadrilateral / Tangential quadrilateral / Triangle / Equilateral triangle / Nine-point circle / Malfatti circles / Geometry / Quadrilaterals / Triangle geometry

FGcumulativeauthorindex.dvi

DocID: 5BEP - View Document

Malfatti circles / Tangent circles / Inscribed figure / Circle / Gian Francesco Malfatti / Triangle / Spherical trigonometry / Equilateral triangle / Lune / Geometry / Circles / Triangle geometry

Untitled

DocID: jdi - View Document

Tangent circles / Tangent / Steiner chain / Geometry / Circles / Malfatti circles

PDF Document

DocID: aJH - View Document